
PowerDNS Cloud Control

Monitoring

Jun 01, 2023
Release 2.3.0

©2023 by Open-Xchange AG and PowerDNS.COM BV. All rights reserved. Open-Xchange, Pow-erDNS, the Open-Xchange logo and PowerDNS logo are trademarks or registered trademarksof Open-Xchange AG. All other company and/or product names may be trademarks or regis-tered trademarks of their owners. Information contained in this document is subject to changewithout notice.

PowerDNS Cloud ControlMonitoring

Contents

1 Overview 11.1 Cloud Control Monitoring . 1
2 Helm Charts 22.1 Charts . 22.2 Usage . 32.2.1 Install Tools . 32.2.2 Download Helm Charts . 32.2.3 Deploying Cloud Control Monitoring . 32.2.4 Accessing Grafana . 42.2.5 Accessing Prometheus . 4
3 Prometheus Adapter 53.1 Adapter . 53.2 Predefined Metrics . 63.3 Horizontal Pod Autoscaler . 7
4 Grafana Dashboards 84.1 Dashboards . 84.2 Download . 9
5 Prometheus Alert Rules 105.1 Alert Rules . 105.2 Download . 11
6 Component Reference 126.1 Operators . 126.2 Components . 13
7 Configuration 147.1 Configuration . 147.1.1 Enable/Disable components . 147.1.2 Ingresses & Loadbalancers . 157.1.3 Private Registries . 177.1.4 Security contexts . 187.1.5 Scheduling controls . 21

i

PowerDNS Cloud ControlMonitoring

1 Overview

1.1 Cloud Control Monitoring
Cloud Control Monitoring helps provide insight into Cloud Control deployments. The monitor-ing stack is built using the following components:

• Grafana - Visualisation
• Prometheus - Metrics gathering & storage
• kube-state-metrics (KSM) - Service that exposes Kubernetes metrics to prometheus
• Prometheus Adapter - Exposes Prometheus metrics via Kubernetes Metrics API

The stack can be deployed in its entirety, or partially depending on your existing monitoringinfrastructure. When the full stack is deployed, the result will be a namespace containing thefollowing components:

1

PowerDNS Cloud ControlMonitoring

2 Helm Charts

2.1 Charts
The Helm charts which are available to deploy this stack are as follows:

• monitoring-operators - Deploy Grafana & Prometheus operators + accompanying CRDs
• monitoring - Deploy Prometheus & Grafana (including dashboards + datasource) usingabove mentioned operators. Also deploys KSM & Prometheus Adapter.

Since the monitoring chart depends on the availability of the operators, the monitoring-operators chart needs to be installed prior to the monitoring chart if you intend to deployGrafana and/or Prometheus.

2

PowerDNS Cloud ControlMonitoring

2.2 Usage

2.2.1 Install Tools
You will need the following software on the machine from which you want to deploy CloudControl Monitoring:

• Kubectl (Configured for your target Kubernetes cluster)
• Helm v3 (https://helm.sh/docs/intro/install/)

2.2.2 Download Helm Charts
Cloud Control Monitoring Helm Charts are available on the Open-Xchange registry, located at:registry.open-xchange.com.
There are several methods for obtaining Helm Charts using Helm’s CLI, in this chapter we areusing a method that copies the chart locally to your filesystem prior to using it. Any Helm-supportedmethodwill work, but youwill need to adjust the commands in this guide accordinglyif you wish to utilise a different method.
First step will be to make Helm aware of the Cloud Control repository (replace username &password with your OX registry credentials):
helm repo add cloudcontrol https://registry.open-xchange.com/chartrepo/cloudcontrol \
--username=REGISTRY_USERNAME_HERE --password=REGISTRY_PASSWORD_HERE

Once the repository has been added you can pull the Cloud Control Monitoring Helm Charts.To pull the monitoring Helm Charts and export them to your current working directory use thefollowing commands:
The release we're working with
CCTAG=2.3.0

Ensure repo data is up-to-date
helm repo update

Pull the Helm Chart & unpack
helm pull cloudcontrol/monitoring-operators -d . --version=$CCTAG --untar
helm pull cloudcontrol/monitoring -d . --version=$CCTAG --untar

2.2.3 Deploying Cloud Control Monitoring
To deploy the monitoring stack without any customization you can use the following steps:
The namespace
CC_MON_NAMESPACE=ccmon
HELM_RELEASE=ccmon

Deploy the monitoring operators & CRDs
helm install $HELM_RELEASE-operators ./monitoring-operators --namespace $CC_MON_NAMESPACE \
--create-namespace

(continues on next page)

3

https://helm.sh/docs/intro/install/

PowerDNS Cloud ControlMonitoring

(continued from previous page)
Deploy the monitoring stack
helm install $HELM_RELEASE ./monitoring --namespace $CC_MON_NAMESPACE

Note: you can remove --create-namespace if you have an existing namespace to deploy into

2.2.4 Accessing Grafana
You can use kubectl’s port-forwarding to quickly access the Grafana service:
The namespace
CC_MON_NAMESPACE=ccmon

kubectl --namespace=$CC_MON_NAMESPACE port-forward svc/grafana 3000:grafana

You can now visit Grafana at: http://localhost:3000/
When prompted for a username/password, you can login using the username configured in‘grafana.admin.username’ and based on the ‘grafana.admin.password’ setting a static or dy-namically generated password. To customize this behaviour, you canmodify the following blockin the helm values:
grafana:
UI Access
admin:
Grafana admin credentials
username: admin
password: some_password

If no password is specified (as in the example above), a random password will be generatedand stored in Secret: grafana-credentials
For a more permanent method of accessing Grafana, refer to the Configuration chapter to con-figure an Ingress object.

2.2.5 Accessing Prometheus
You can use kubectl’s port-forwarding to quickly access the Prometheus service:
The namespace
CC_MON_NAMESPACE=ccmon

kubectl --namespace=$CC_MON_NAMESPACE port-forward svc/prometheus 9090:web

You can now visit Prometheus at: http://localhost:9090/
For a more permanent method of accessing Prometheus, refer to the Configuration chapter toconfigure an Ingress object.

4

http://localhost:3000/
http://localhost:9090/

PowerDNS Cloud ControlMonitoring

3 Prometheus Adapter

3.1 Adapter
Included in the monitoring stack is the Prometheus Adapter (https://github.com/
kubernetes-sigs/prometheus-adapter). This component is used to expose metrics via the Ku-bernetes API, based on data stored in Prometheus. Exposing these metrics via the KubernetesAPI enables the use of Horizontal Pod Autoscalers in Cloud Control deployments.

5

https://github.com/kubernetes-sigs/prometheus-adapter
https://github.com/kubernetes-sigs/prometheus-adapter

PowerDNS Cloud ControlMonitoring

3.2 Predefined Metrics
By default a few basic metrics are exposed via the adapter, which are configured in thehelm values under the section ‘prometheus-adapter.rules.custom’. The format that these met-rics must follow is defined here: https://github.com/kubernetes-sigs/prometheus-adapter/
blob/master/docs/config.md

One of the default values available is the amount of queries received by dnsdist, defined asfollows:
- seriesQuery: 'dnsdist_queries'

resources:
overrides:
namespace: {resource: "namespace"}
pod: {resource: "pod"}

name:
matches: "^(.*)"
as: "${1}_per_second"

metricsQuery: 'sum(rate(<<.Series>>{<<.LabelMatchers>>}[1m])) by (<<.GroupBy>>)'

Based on the ‘counter’ type metric ‘dnsdist_queries’ in Prometheus, the rate (ie: the increaseof the metric over a period of time) at which it increases per second is calculated, giving theamount of queries handled per second over the interval. This makes a metric available via theKubernetes API named “dnsdist_queries_per_second”
Another example focuses on a ‘guage’ type metric, exposing the average latency reported for adnsdist instance:
- seriesQuery: '{__name__=~"^dnsdist_latency_avg.*$"}'

resources:
overrides:
namespace: {resource: "namespace"}
pod: {resource: "pod"}

name:
matches: ""
as: ""

metricsQuery: 'avg(<<.Series>>{<<.LabelMatchers>>}) by (<<.GroupBy>>)'

Since there are several guages that match the query expression, this leads to the followingmetrics being available via the Kubernetes API:
• dnsdist_latency_avg100
• dnsdist_latency_avg1000
• dnsdist_latency_avg10000
• dnsdist_latency_avg1000000

To see all the metrics exposed via the Prometheus Adapter, you can use kubectl:
Note: If you have other sources for metrics available on your cluster this might be a␣
→˓long list
kubectl get --raw /apis/custom.metrics.k8s.io/v1beta1/ | jq

6

https://github.com/kubernetes-sigs/prometheus-adapter/blob/master/docs/config.md
https://github.com/kubernetes-sigs/prometheus-adapter/blob/master/docs/config.md

PowerDNS Cloud ControlMonitoring

3.3 Horizontal Pod Autoscaler
These metrics are made available to allow for using Kubernetes’ Horizontal Pod Autoscaler tobe used to automatically scale up & down deployments. Since the Horizontal Pod Autoscalingfunctionality is part of the actual deployment of dnsdist & Recursor, you can find more aboutthis part of the configuration in the Cloud Control deployment documentation.

7

PowerDNS Cloud ControlMonitoring

4 Grafana Dashboards

4.1 Dashboards
When the ‘monitoring’ chart is used to deploy the stack, several monitoring dashboards will beprovisioned automatically. Currently, this includes the following dashboards:

• PowerDNS dnsdist Detailed insight into running dnsdist instances
• PowerDNS Recursor overview High-level overview of running Recursor instances
• PowerDNS Recursor details Detailed insight into running Recursor instances
• PowerDNS Authoritative details Detailed insight into running Authoritative instances
• PowerDNS Authoritative - Lightningstream Detailed insight into running Light-ningstream instances

All dashboards have selectors available, which you can use to view details regarding specificinstances or instances within a namespace. These selectors are located top-left of each dash-board and look as follows:

8

PowerDNS Cloud ControlMonitoring

4.2 Download
If you opt to utilize an existing Grafana installation, you can download the dashboards from thethe Open-Xchange registry, located at: registry.open-xchange.com
The dashboards are stored inside an OCI artifact, so you will have to use a compatible client toobtain them. Recommended client to use for this is: ORAS (https://oras.land/)
With a CLI such as oras available, you can download the dashboards artifact via:
oras pull registry.open-xchange.com/cloudcontrol/monitoring-dashboards:2.3.0

The result will be a tar archive which contains all the dashboards in JSON format.

9

https://oras.land/

PowerDNS Cloud ControlMonitoring

5 Prometheus Alert Rules

5.1 Alert Rules
When the ‘monitoring’ chart is used to deploy the stack, several prometheus alert rules will beprovisioned automatically. Currently, this includes alert rules for the following:

• PowerDNS Dnsdist
• PowerDNS Recursor
• PowerDNS Authoritative Server

10

PowerDNS Cloud ControlMonitoring

5.2 Download
If you opt to utilize an existing Prometheus installation, you can download the alert rules fromthe Open-Xchange registry, located at: registry.open-xchange.com
The alert rules are stored inside an OCI artifact, so you will have to use a compatible client toobtain them. Recommended client to use for this is: ORAS (https://oras.land/)
With a CLI such as oras available, you can download the alert rules artifact via:
oras pull registry.open-xchange.com/cloudcontrol/monitoring-alertrules:2.3.0

The result will be a tar archive which contains all the alert rules in YAML format.

11

https://oras.land/

PowerDNS Cloud ControlMonitoring

6 Component Reference

6.1 Operators
The following operators are utilized in the monitoring stack:
Prometheus Operator: https://github.com/prometheus-operator/prometheus-operator
Grafana Operator: https://github.com/grafana-operator/grafana-operator

12

https://github.com/prometheus-operator/prometheus-operator
https://github.com/grafana-operator/grafana-operator

PowerDNS Cloud ControlMonitoring

6.2 Components
The following components are utilized in the monitoring stack:
Prometheus: https://prometheus.io/
Grafana: https://grafana.com/oss/grafana/
Prometheus Adapter: https://github.com/kubernetes-sigs/prometheus-adapter
kube-state-metrics: https://github.com/kubernetes/kube-state-metrics

13

https://prometheus.io/
https://grafana.com/oss/grafana/
https://github.com/kubernetes-sigs/prometheus-adapter
https://github.com/kubernetes/kube-state-metrics

PowerDNS Cloud ControlMonitoring

7 Configuration

7.1 Configuration

7.1.1 Enable/Disable components
The helm charts have ‘enabled’ flags available for all major components. The following sectionsdescribe how you can use these to enable/disable components.

Monitoring Operators

This chart installs the following operators & accompanying CRDs:
• Grafana Operator
• Prometheus Operator

By default all components are installed, this can be controlled using the ‘enabled’ settings in theHelm values:
Grafana Operator
grafana-operator:

Enable the Grafana Operator deployment
enabled: true

Prometheus Operator
prometheus-operator:

Enable the Prometheus Operator deployment
enabled: true

Setting these to ‘false’ will stop the operator (& CRDs) from being deployed.

Monitoring

This chart installs the following components:
• Grafana
• Prometheus
• Prometheus Adapter
• kube-state-metrics (KSM)

By default all components are installed, this can be controlled using the ‘enabled’ settings in theHelm values:
14

PowerDNS Cloud ControlMonitoring

Grafana
grafana:

Enable the Grafana deployment
enabled: true

Prometheus
prometheus:

Enable the Prometheus deployment
enabled: true

Prometheus Adapter
prometheus-adapter:

Enable the Prometheus Adapter deployment
enabled: true

kube-state-metrics
kube-state-metrics:

Enable the Kube State Metrics deployment
enabled: true

Setting these to ‘false’ will stop the component from being deployed.

7.1.2 Ingresses & Loadbalancers
The following components have configuration options to add an Ingress and/or Loadbalancerto expose them outside of the cluster:

• Grafana
• Prometheus

To configure an Ingress and/or Loadbalancer, you can override the ‘ingress’ and ‘service’ config-uration under the ‘prometheus’ & ‘grafana’ sections in the helm values. The following sectionsdescribe how you can use these to configure them.

Ingress

By default, the ingress is disabled:
Ingress configuration
ingress:

Enable the Ingress
enabled: false

To create an ingress which only serves HTTP, set ‘enabled’ to true and add the hosts on whichyou want the ingress to listen.
Example which exposes Prometheus on ‘http://prometheus.example.com’ using the NGINXIngress Controller:
ingress:

enabled: true
ingressClassName: "nginx"

(continues on next page)

15

http://prometheus.example.com

PowerDNS Cloud ControlMonitoring

(continued from previous page)
hosts:
- prometheus.example.com

To create an ingress which serves HTTPS (and has an HTTP->HTTPS redirect), provide a ‘tls’configuration block.
Example which exposes Prometheus on ‘https://prometheus.example.com’ via the NGINXIngress Controller and a pre-existing certificate in a secret named ‘prometheus-cert’:
ingress:

enabled: true
ingressClassName: "nginx"
hosts:
- prometheus.example.com

tls:
- secretName: prometheus-cert
hosts:
- prometheus.example.com

Example which exposes Prometheus on ‘https://prometheus.example.com’ via the NGINXIngress Controller and an on-demand certificate provisioned by ‘cert-manager’ in a secretnamed ‘prometheus-cert’ (note the additional annotation):
ingress:

enabled: true
ingressClassName: "nginx"
annotations:
cert-manager.io/cluster-issuer: ca-issuer

hosts:
- prometheus.example.com

tls:
- secretName: prometheus-cert
hosts:
- prometheus.example.com

Loadbalancer

By default, services of type ‘ClusterIP’ are created. To expose the service using a loadbalancer,set the type to ‘LoadBalancer’ and add the necessary additional configuration, based on yourLoadBalancer provider. Example Grafana service configuration in a cluster with MetalLB:
Grafana Service
service:

type: LoadBalancer
annotations:
metallb.universe.tf/address-pool: name_of_pool

loadBalancerIP: 12.34.56.78 # Omit this to have a random IP assigned from the pool
ports:
grafana-http:
port: 3000

For a NodePort service, set the type to ‘NodePort’ and if desirable, specify the nodePort:

16

https://prometheus.example.com
https://prometheus.example.com

PowerDNS Cloud ControlMonitoring

Grafana Service
service:

type: NodePort
ports:
grafana-http:
port: 3000
nodePort: 30003

7.1.3 Private Registries
All images referenced by the monitoring & monitoring-operators charts are available on publicregistries. If you intend to run the monitoring stack on a kubernetes cluster which makes useof a local registry, you can use one or more of the following settings in your helm values toconfigure that registry:
Monitoring - global overrides
global:
Override image-related settings for this chart and all subcharts
image:
Override registry for all images
registry: "myregistry.local:8085"

Override repository for all images
repository: "myrepository"

Override pullPolicy for all images
pullPolicy: "IfNotPresent"

Add imagePullSecrets for this chart and all subcharts
imagePullSecrets:
myIPSSecret:
registry: registry.example.com:5000
username: regUsername
password: regPassword
email: admin@registry.example.com

Reference existing Image Pull Secrets for this chart and all subcharts
imagePullSecretsList:
- "my-existing-IPS-secret"

Each setting explained:
global.image.registry
All images will be attempted to be pulled from this registry (format: host:port)
global.image.repository
All images will be attempted to be pulled from this repository, on above configured registry
global.image.pullPolicy
This pull policy will be specified for each image
global.imagePullSecrets
For each entry a Secret will be created and assigned to each Pod

17

PowerDNS Cloud ControlMonitoring

global.imagePullSecretsList
Each pre-existing Secret referenced in this list (by name) will be assigned to each Pod
If you have a need to override the above settings for specific images, you can find the corre-sponding ‘image:’ configuration blocks in the values file.

7.1.4 Security contexts
By default Cloud Control Monitoring deploys all Pods with a security context which configuresthe following items:
securityContext:
fsGroup: 2000
runAsUser: 2000
runAsNonRoot: true
runAsGroup: 1000

Note: Some Pods have different numerical values for fsGroup, runAsUser & runAsGroup asthey have been kept at the defaults provided by open source projects
And all containers have the following applied:
securityContext:
readOnlyRootFilesystem: true
allowPrivilegeEscalation: false

Monitoring Operators - Pod Security Context

To overwrite the Pod securityContext for the operators you can add a podSecurityContext at thecomponent-level:
Prometheus Operator
prometheus-operator:
podSecurityContext:
runAsUser: 1000953

Grafana Operator
grafana-operator:

podSecurityContext:
runAsUser: 1000953

Since the configuration of this podSecurityContext overwrites the full default Pod securityCon-text, this leads to the following differences compared to the defaults:
• fsGroup - This is no longer present, so it is dropped from the Pod security context
• runAsUser - This is now set to ‘1000953’
• runAsGroup - This is no longer present, so it is dropped from the Pod security context
• runAsNonRoot - This is no longer present, so it is dropped from the Pod security context

18

PowerDNS Cloud ControlMonitoring

Monitoring Operators - Container Security Context

To overwrite the Container securityContext for the operators you can add a containerSecurity-Context at the component-level:
Prometheus Operator
prometheus-operator:
containerSecurityContext:
capabilities:
drop:
- ALL

Grafana Operator
grafana-operator:

containerSecurityContext:
capabilities:
drop:
- ALL

Since the configuration of this containerSecurityContext overwrites the full default ContainersecurityContext, this leads to the following differences compared to the defaults:
• allowPrivilegeEscalation - This is no longer present, so it is dropped from the Containersecurity context
• capabilities - This is now set to drop ‘ALL’ capabilities
• readOnlyRootFilesystem - This is no longer present, so it is dropped from the Containersecurity context

Monitoring - Pod Security Context

To overwrite the Pod securityContext for the monitoring Pods you can add a podSecurityContextat the component-level:
Grafana
grafana:

podSecurityContext:
runAsUser: 1000953

Prometheus
prometheus:

podSecurityContext:
runAsUser: 1000953

KSM
kube-state-metrics:

podSecurityContext:
runAsUser: 1000953

Prometheus Adapter:
prometheus-adapter:

podSecurityContext:
runAsUser: 1000953

Since the configuration of this podSecurityContext overwrites the full default Pod securityCon-text, this leads to the following differences compared to the defaults:
19

PowerDNS Cloud ControlMonitoring

• fsGroup - This is no longer present, so it is dropped from the Pod security context
• runAsUser - This is now set to ‘1000953’
• runAsGroup - This is no longer present, so it is dropped from the Pod security context
• runAsNonRoot - This is no longer present, so it is dropped from the Pod security context

Monitoring - Container Security Context

To overwrite the Container securityContext for the monitoring Pods you can modify the follow-ing parameters at the component-level:
Grafana
grafana:

containerSecurityContext:
capabilities:

drop:
- ALL

Prometheus
prometheus:

containers:
configReloader:
containerSecurityContext:

capabilities:
drop:
- ALL

prometheus:
containerSecurityContext:

capabilities:
drop:
- ALL

KSM
kube-state-metrics:

containerSecurityContext:
capabilities:
drop:
- ALL

Prometheus Adapter:
prometheus-adapter:

containerSecurityContext:
capabilities:
drop:
- ALL

Note: The Prometheus Pod has multiple containers which can be modified individually
Since the configuration of this containerSecurityContext overwrites the full default ContainersecurityContext, this leads to the following differences compared to the defaults:

• allowPrivilegeEscalation - This is no longer present, so it is dropped from the Containersecurity context
• capabilities - This is now set to drop ‘ALL’ capabilities

20

PowerDNS Cloud ControlMonitoring

• readOnlyRootFilesystem - This is no longer present, so it is dropped from the Containersecurity context

7.1.5 Scheduling controls
You can configure the scheduling of Monitoring components using the standard Kubernetescontrols:

• Affinity
• Node Selector
• Tolerations

Overriding Affinity

Affinity can be configured via the ‘affinity’ override at component-level. This override shouldhold a standard Kubernetes configuration, for example:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:

nodeSelectorTerms:
- matchExpressions:
- key: topology.kubernetes.io/zone
operator: In
values:
- antarctica-east1
- antarctica-west1

Note: This appends to a default podAntiAffinity which prefers to schedule multiple Pods of thesame type across different nodes
More information regarding the syntax can be found at: https://kubernetes.io/docs/
concepts/scheduling-eviction/assign-pod-node

Overriding Node Selector

Node Selector can be configured via the ‘nodeSelector’ override at component-level. This over-ride should hold a standard Kubernetes configuration, for example:
nodeSelector:
some_node_label: some-value

More information regarding the syntax can be found at: https://kubernetes.io/docs/tasks/
configure-pod-container/assign-pods-nodes/

21

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/

PowerDNS Cloud ControlMonitoring

Overriding Tolerations

Tolerations can be configured via the ‘tolerations’ override at component-level. This overrideshould hold a standard Kubernetes configuration, for example:
tolerations:
- key: "example-key"
operator: "Exists"
effect: "NoSchedule"

Note: This appends to the default tolerations which are set by the Kubernetes cluster on whichyou deploy.
More information regarding the syntax can be found at: https://kubernetes.io/docs/
concepts/scheduling-eviction/taint-and-toleration/

Monitoring Operators - Pod Scheduling

To overwrite the Pod scheduling configuration for the operators you can use the followingcomponent-level overrides:
For example:
Prometheus Operator
prometheus-operator:
affinity:
{}

nodeSelector:
{}

tolerations:
[]

Grafana Operator
grafana-operator:

affinity:
{}

nodeSelector:
{}

tolerations:
[]

Monitoring - Pod Scheduling

To overwrite the Pod scheduling configuration for the monitoring Pods you can use the follow-ing component-level overrides:
For example:
Grafana
grafana:

affinity:
{}

nodeSelector:
{}

(continues on next page)

22

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

PowerDNS Cloud ControlMonitoring

(continued from previous page)
tolerations:
[]

Prometheus
prometheus:

affinity:
{}

nodeSelector:
{}

tolerations:
[]

KSM
kube-state-metrics:

affinity:
{}

nodeSelector:
{}

tolerations:
[]

Prometheus Adapter:
prometheus-adapter:

affinity:
{}

nodeSelector:
{}

tolerations:
[]

23

	Overview
	Cloud Control Monitoring

	Helm Charts
	Charts
	Usage
	Install Tools
	Download Helm Charts
	Deploying Cloud Control Monitoring
	Accessing Grafana
	Accessing Prometheus

	Prometheus Adapter
	Adapter
	Predefined Metrics
	Horizontal Pod Autoscaler

	Grafana Dashboards
	Dashboards
	Download

	Prometheus Alert Rules
	Alert Rules
	Download

	Component Reference
	Operators
	Components

	Configuration
	Configuration
	Enable/Disable components
	Ingresses & Loadbalancers
	Private Registries
	Security contexts
	Scheduling controls

