
PowerDNS Cloud Control

Reference

Jul 18, 2023

Release 2.3.1

©2023 by Open-Xchange AG and PowerDNS.COM BV. All rights reserved. Open-Xchange, Pow-

erDNS, the Open-Xchange logo and PowerDNS logo are trademarks or registered trademarks

of Open-Xchange AG. All other company and/or product names may be trademarks or regis-

tered trademarks of their owners. Information contained in this document is subject to change

without notice.

PowerDNS Cloud ControlReference

Contents

1 Overview 1

2 Private Registries 2

2.1 Example - Using a local registry with inline credentials 3

2.2 Example - Using a local registry with a pre-provisioned image pull secret 3

3 Cluster networking 4

3.1 IPv4 only (default) . 4

3.2 IPv6 only . 4

3.3 Dualstack - IPv4 primary . 5

3.4 Dualstack - IPv6 primary . 5

4 Resources 6

4.1 Kubernetes: Resource requests & limits . 6

4.2 Cloud Control defaults . 7

4.3 Resource tuning: DNSdist . 7

4.4 Resource tuning: Recursor . 8

4.5 Resource tuning: Auth . 8

4.5.1 Lightning Stream with large data sets . 10

5 Exposing dnsdist 11

5.1 Example: Exposing via NodePort . 12

5.2 Example: Exposing via LoadBalancer . 13

5.3 Example: Exposing via LoadBalancer with mixed protocols 14

5.4 Example: Separate LoadBalancers for IPv4 & IPv6 in a dualstack cluster 14

6 Exposing auth API 16

6.1 NGINX Example: HTTP . 16

6.2 NGINX Example: HTTPS with cert-manager . 17

6.3 NGINX Example: HTTP with stickiness using cookies 17

6.4 NGINX Example: HTTP with stickiness using upstream-hash-by 18

7 Labels & Annotations 19

7.1 Labeling services with multiple ports . 20

7.2 Precedence of labeling & annotating . 21

8 Security contexts 22

8.1 Configuring a global Pod security context . 22

8.2 Configuring a Pod security context for a specific set of instances 23

8.3 Precedence of podSecurityContext . 23

8.4 Configuring a global Container security context . 23

8.5 Configuring a Container security context for a specific set of instances 24

8.6 Precedence of containerSecurityContext . 24

i

PowerDNS Cloud ControlReference

9 Storage 25

9.1 Defaults . 25

9.2 Global . 25

9.3 Instance Set . 26

10 Default configuration 27

10.1 auth . 27

10.2 dnsdist . 29

10.3 recursor . 34

10.4 resolver . 36

10.5 zoneControl . 36

11 Instances 38

11.1 auths . 38

11.1.1 Parameters . 38

11.1.2 Parameter Sets . 39

11.1.3 Backends . 41

11.1.3.1 Postgres (pre-existing) . 41

11.1.3.2 Postgres (Operator-managed) . 42

11.1.3.3 MySQL . 42

11.1.3.4 GeoIP . 43

11.1.3.5 GeoIP - MaxMind Database . 43

11.1.3.6 GeoIP - MaxMind Database - HTTP 43

11.1.3.7 GeoIP - MaxMind Database - OCI 44

11.1.3.8 GeoIP - Custom Database . 45

11.1.3.9 LightningStream . 46

11.2 dnsdists . 51

11.2.1 Parameters . 51

11.2.2 Parameter Sets . 52

11.2.3 Server Pools . 55

11.2.4 DNS over HTTP(S) . 56

11.2.5 DNS over TLS . 58

11.3 recursors . 59

11.3.1 Parameters . 59

11.3.2 Parameter Sets . 60

11.3.3 Forward Zones . 62

11.4 resolvers . 62

11.4.1 Parameters . 63

11.4.2 Parameter Sets . 63

11.5 rulesets . 64

11.5.1 Rules . 65

11.5.2 Combinators . 65

11.5.3 Selectors . 65

11.5.3.1 TCP . 65

11.5.3.2 MaxQPS . 66

11.5.3.3 MaxQPSIP . 66

11.5.3.4 NetmaskGroup . 67

11.5.3.5 Opcode . 67

11.5.3.6 QName . 67

11.5.3.7 QType . 68

11.5.4 Actions . 68

11.5.4.1 Allow . 68

ii

PowerDNS Cloud ControlReference

11.5.4.2 Drop . 68

11.5.4.3 Pool . 68

11.5.4.4 QPS . 69

11.5.4.5 RCode . 69

11.5.4.6 TC . 69

11.6 zonecontrols . 69

11.6.1 Parameters . 69

11.6.2 Parameter Sets . 70

11.6.3 Postgres Database . 70

11.6.3.1 Postgres (pre-existing) . 70

11.6.3.2 Postgres (Operator-managed) . 71

12 Prometheus 72

iii

PowerDNS Cloud ControlReference

1 Overview

Configuration of a deployment can be achieved by overriding specific values that are exposed

by the Helm chart. This reference guide lists all the values that can be set/configured. Since

there are many different configuration options available, these have been separated into the

following sections inside the helm values:

Generic configuration:

• global: Overrides to pull images from a private registry

• registrySecrets: Configuration of credentials for the image registry

• ipFamily: Configuration of the cluster networking

• prometheus: Configuration of Prometheus scrape settings

Configuration of default settings:

• auth: Default configuration for all auth instances

• dnsdist: Default configuration for all dnsdist instances

• recursor: Default configuration for all recursor instances

• resolver: Default configuration for all resolver instances

• zonecontrol: Default configuration for all zonecontrol instances

Configuration of instances:

• auths: Collection of auth instances to deploy

• dnsdists: Collection of dnsdist instances to deploy

• recursors: Collection of recursor instances to deploy

• resolvers: Collection of resolver instances to deploy

• rulesets: Sets of rules to deploy, for dnsdist to use

• zonecontrols: Collection of zonecontrol instances to deploy

Each of these sections is explained in detail in the chapters below.

For a basic example of how to use the values, please refer to the Getting Started chapter in theOverview guide.

1

PowerDNS Cloud ControlReference

2 Private Registries

If you intend to run Cloud Control on a kubernetes cluster which makes use of a local registry

and/or a registry cache/proxy, you can use one or more of the following settings in your helm

values to configure that registry (for both powerdns and powerdns-operators helm charts):

Monitoring - global overrides
global:
Override image-related settings for this chart and all subcharts
image:
Override registry for all images
registry: "myregistry.local:8085"

Override repository for all images
repository: "myrepository"

Override pullPolicy for all images
pullPolicy: "IfNotPresent"

Add imagePullSecrets for this chart and all subcharts
imagePullSecrets:
myIPSSecret:
registry: registry.example.com:5000
username: regUsername
password: regPassword
email: admin@registry.example.com

Reference existing Image Pull Secrets for this chart and all subcharts
imagePullSecretsList:
- "my-existing-IPS-secret"

Each setting explained:

global.image.registry

All images will be attempted to be pulled from this registry (format: host:port)

global.image.repository

All images will be attempted to be pulled from this repository, on above configured registry

global.image.pullPolicy

This pull policy will be specified for each image

global.imagePullSecrets

For each entry a Secret will be created and assigned to each Pod

global.imagePullSecretsList

2

PowerDNS Cloud ControlReference

Each pre-existing Secret referenced in this list (by name) will be assigned to each Pod

If you have a need to override the above settings for specific images, you can find the corre-

sponding ‘image:’ configuration blocks in the values file.

2.1 Example - Using a local registry with inline credentials

You can configure the local registry using ‘global.image.registry’ and provide the credentials

inline by adding an entry to ‘global.imagePullSecrets’:

Monitoring - global overrides
global:
Override image-related settings
image:
Override registry for all images
registry: "my.registry.local:5000"

Add imagePullSecrets
imagePullSecrets:
myRegistrySecret:

registry: my.registry.local:5000
username: regUsername
password: regPassword
email: admin@my.registry.local

2.2 Example - Using a local registry with a pre-provisioned image

pull secret

You can configure the local registry using ‘global.image.registry’ and provide the name of the

pre-provisioned image pull secret by adding an entry to ‘global.imagePullSecretsList’:

Monitoring - global overrides
global:
Override image-related settings
image:
Override registry for all images
registry: "my.registry.local:5000"

Reference existing Image Pull Secrets
imagePullSecretsList:
- "my-pre-provisioned-IPS-secret"

3

PowerDNS Cloud ControlReference

3 Cluster networking

To be able to support Kubernetes clusters with IPv4, IPv6 or dual stack (IPv4 & IPv6) configu-

rations, it is required to ensure the ‘ipFamily’ configuration in the helm values matches your

cluster. The ‘ipFamily’ section contains the following parameters:

• ipFamily.ipv4: Whether or not your cluster has IPv4 enabled (Default: true)

• ipFamily.ipv6: Whether or not your cluster has IPv6 enabled (Default: false)

• ipFamily.families: Preference of IP families on your cluster, if it is a dualstack cluster

To ensure your deployment is correctly configured, you need to provide one of the 4 possible

variations:

3.1 IPv4 only (default)

Networking configuration
ipFamily:
ipv4: true
ipv6: false
families:
- "IPv4"
- "IPv6"

Note: ‘families’ is ignored in this configuration. It is only used in a dualstack setup.

3.2 IPv6 only

Networking configuration
ipFamily:
ipv4: false
ipv6: true
families:
- "IPv4"
- "IPv6"

Note: ‘families’ is ignored in this configuration. It is only used in a dualstack setup.

4

PowerDNS Cloud ControlReference

3.3 Dualstack - IPv4 primary

If you are running a dualstack cluster, you can check any Pod to see if your cluster has a pref-

erence for IPv4 or IPv6. Your pods will have a ‘podIP’ and 2 values for ‘podIPs’. If the ‘podIP’ is

an IPv4 address as shown in the example below, then you are running a cluster with IPv4 as

primary:

podIP: 172.17.183.4 # IPv4
podIPs:
- ip: 172.17.183.4 # IPv4
- ip: fd43:128b:8658:b73b:3eb7:2e30:8815:3f6 # IPv6

Configuration for dualstack with IPv4 primary:

Networking configuration
ipFamily:
ipv4: true
ipv6: true
families:
- "IPv4" # IPv4 is primary
- "IPv6"

3.4 Dualstack - IPv6 primary

If you are running a dualstack cluster, you can check any Pod to see if your cluster has a pref-

erence for IPv4 or IPv6. Your pods will have a ‘podIP’ and 2 values for ‘podIPs’. If the ‘podIP’ is

an IPv6 address as shown in the example below, then you are running a cluster with IPv6 as

primary:

podIP: fd43:128b:8658:b73b:3eb7:2e30:8815:3f6 # IPv6
podIPs:
- ip: fd43:128b:8658:b73b:3eb7:2e30:8815:3f6 # IPv6
- ip: 172.17.183.4 # IPv4

Configuration for dualstack with IPv6 primary:

Networking configuration
ipFamily:
ipv4: true
ipv6: true
families:
- "IPv6" # IPv6 is primary
- "IPv4"

5

PowerDNS Cloud ControlReference

4 Resources

Cloud Control’s powerdns chart offers several ways to configure Cloud Control in terms of re-

source requests/limits. These are as follows:

• Containers have no requests and/or limits specified (default)

• All containers have a default cpu & memory limit enabled

By default Cloud Control runs without any limits. You can enable all the containers to have

limits by setting resourceDefaults to true (this is a top-level parameter). Example showing a set
of dnsdist instances with the default resource demands enabled:

resourceDefaults: true

dnsdists:
mydnsdist:
replicas: 2

Note: You can also leave resourceDefaults on false and only specify resource demands for spe-
cific containers. The options for configuring specific containers are discussed below.

4.1 Kubernetes: Resource requests & limits

When considering resource allocation for Pods & Containers on Kubernetes, it is important

to know how these are handled via requests and limits. When scheduling a Pod to a node,
Kubernetes considers the following regarding capacity:

• requests: Minimum amount of a resource which should be available on a node to allow

a Pod to be scheduled

• limits: Maximum amount of a resource which the Pod can utilize before the node takes

action

The requests and/or limits amount of a resource on a Pod is the sum of the corresponding
resource demand on all containers in that Pod (excluding init containers).

At runtime, the limits of each Container are important to understand. When a Container ex-

ceeds the limits amount, a node generally takes the following action:
• cpu: Throttles CPU usage by the Container, usually has a negative performance impact

• memory: Terminates the Container with exit code 137 (OOM)

Note: Your cluster might take different actions, check with a cluster administrator if you wish

to know how your cluster will react.

6

PowerDNS Cloud ControlReference

If a Pod is scheduled to a node which meets the requests amount of resources, but later is un-
able to allow the Pod to grow to its limits amount of resources, a cluster typically attempts to
rectify this situation by rescheduling Pods to other nodes. When a Pod is rescheduled to an-

other node a new instance of it is spawned on the other node and this has certain implications:

• DNSdist, Auth and Recursor: It will start up again with a fresh cache

• Auth with Lightning Stream: It will need to start a fresh sync from the S3 bucket

Both are preferable to avoid, hence the preference to avoid having any requests lower than thelimits.

4.2 Cloud Control defaults

The default resources (enabled via resourceDefaults: true) assigned to Cloud Control Pods / Con-
tainers are set based on the following:

• Defaults only have limits, not requests. Having no requests implies that Kubernetes only
schedules the Pods to nodes which can meet the demanded limits and hence reduces the
risk of having a Pod rescheduled to another node. Preventing unnecessary Pod reschedul-

ing helps ensure DNSdist, Recursor & Auth do not have to rebuild their caches and Light-

ning Stream will not have to re-synchronise.

• The limits for DNSdist, Auth, Recursor and Lightning Stream containers are conservative,

the should be seen as ‘minimum requirements’ rather than ‘recommended requirements’.

Subsequent chapters will help judge which of these settings you might want to increase

depending on your type of deployment.

4.3 Resource tuning: DNSdist

A set of DNSdist instances has options for tuning the resources allocated to each container, via

the following options:

• agentResources: Resources allocated to the ‘agent’ container

• initResources: Resources allocated to the ‘dnsdist-init’ container

• resources: Resources allocated to the ‘dnsdist’ container

• rpcServerResources: Resources allocated to the ‘rpc-server’ container

• stateResources: Resources allocated to the ‘dnsdist-state’ container

These options take a Kubernetes resource object as value.
Example modifying the limits for the dnsdist container:
dnsdists:
mydnsdist:
replicas: 2

Resources allocated to the 'dnsdist' container
resources:
limits:
cpu: 6
memory: 12Gi

7

PowerDNS Cloud ControlReference

Above will cause the dnsdist container to demand 6 cores (or vCPUs) and 12 GB of memory.

When tuning the resources allocated to a DNSdist Pod, it is important to consider the following:

• CPU requirements of the dnsdist container are largely dependent on the amount of re-
quests which are handled and (if applicable) the amount of Lua script involved in process-

ing each request

• Memory requirements of the dnsdist container are mainly based on the size of the cache

4.4 Resource tuning: Recursor

A set of Recursor instances has options for tuning the resources allocated to each container,

via the following options:

• agentResources: Resources allocated to the ‘recursor-agent’ container

• initResources: Resources allocated to the ‘recursor-init’ container

• resources: Resources allocated to the ‘recursor’ container

These options take a Kubernetes resource object as value.
Example modifying the limits for the recursor container:
recursors:
myrecursor:
replicas: 2

Resources allocated to the 'recursor' container
resources:
limits:
cpu: 6
memory: 6Gi

Above will cause the recursor container to demand 6 cores (or vCPUs) and 6 GB of memory.

When tuning the resources allocated to a Recursor Pod, it is important to consider the following:

• CPU requirements of the recursor container are largely dependent on the amount of re-
quests which are handled and (if applicable) the amount of Lua script involved in process-

ing each request

• Memory requirements of the recursor container are mainly based on the size of the cache

4.5 Resource tuning: Auth

A set of Auth instances has options for tuning the resources allocated to each container, via the

following options:

• agentResources: Resources allocated to the ‘agent’ container

• initResources: Resources allocated to the ‘auth-init’ container

• lightningStreamResources: Resources allocated to the ‘ls’ container

• resources: Resources allocated to the ‘auth’ container

8

PowerDNS Cloud ControlReference

These options take a Kubernetes resource object as value.
Example modifying the limits for the auth container:
auths:
myauth:
replicas: 2

backends:
{}

Resources allocated to the 'auth' container
resources:
limits:
cpu: 6
memory: 6Gi

Above will cause the auth container to demand 6 cores (or vCPUs) and 6 GB of memory.

If Lightning Stream is used as backend, it is advisable to adjust its resource limits as well, for

example:

auths:
myauth:
replicas: 2

backends:
- type: ls
mapSize: 5000
access_key: my_access_key
secret_key: my_secret_key
region: my_region
bucket: my_bucket
endpoint: https://some.s3.endpoint.com/

Resources allocated to the 'auth' container
resources:
limits:
cpu: 6
memory: 7Gi

Resources allocated to the 'ls' container
lightningStreamResources:
limits:

cpu: 2
memory: 6Gi

In above example it is important to notice 3 figures:

• auth: memory limit

• ls: memory limit

• backend: mapsize (in MB)

All 3 of these closely relate to the size of the dataset of the Auth instance.

When tuning the resources allocated to an Auth Pod, it is important to consider the following:

9

PowerDNS Cloud ControlReference

• CPU requirements of the auth container are largely dependent on the amount of requests
which are handled

• Memory requirements of the auth container are mainly based on the size of the cache
and (if using Lightning Stream) the size of the dataset

• CPU requirements of the ls container are largely dependent on the amount and frequency
of changes in the dataset

• Memory requirements of the ls container are mainly based on the size of the dataset
A good starting point for memory in an Auth Pod with Lightning Stream is to determine an

estimate for the mapsize based on the expected size of the dataset. For the memory limit of

the LS container you can take the mapsize + 10-20%. For the Auth container you start with a
limit ofmapsize + 20-40%.

4.5.1 Lightning Stream with large data sets

When using Lightning Stream with large data sets, there are additional options which are worth

considering regarding memory usage. These options are related to the process of downloading

snapshots and then processing them. This process works as follows:

1. Download snapshot

2. Decompress snapshot

3. Process snapshot

While there can only be 1 snapshot processing for a specific database, there are queues which

ensure processing does not need to wait for a new snapshot to be downloaded and decom-

pressed. These queues are as follows:

• Downloaded snapshots, ready for decompression

• Decompressed snapshots, ready for processing

Default capacity per queue:

• Downloaded snapshots: optionmemoryDownloadedSnapshots, default is 3
• Decompressed snapshots: optionmemoryDecompressedSnapshots, default is 2

If the data set is large enough for these queues to consume significant memory, you can con-

sider tuning them down, but preferably not below the following:

• memoryDownloadedSnapshots = 2
• memoryDecompressedSnapshots = 1

10

PowerDNS Cloud ControlReference

5 Exposing dnsdist

By default a set of dnsdist instances will have a Service object created with type ClusterIP. The

default configuration is as follows (Values: dnsdist.service):

service:
type: ClusterIP
ports:
udp:
port: 53
protocol: UDP

tcp:
port: 53
protocol: TCP

The above results in a Service object with UDP & TCP listeners on port 53. To modify the default

service, you can specify a service item in the dnsdist instance, such as:
dnsdists:
mydnsdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

packetcache:
maxEntries: 200000

service:
type: NodePort

This will override the type of the Service object from ClusterIP to NodePort.
Available parameters:

• type

• loadBalancerIP (Only applicable if type = LoadBalancer)

• loadBalancerSourceRanges (Only applicable if type = LoadBalancer)

• loadBalancerClass (Only applicable if type = LoadBalancer)

• lbMixedProtocol (Only applicable if type = LoadBalancer)

• lbPerIPFamily (Only applicable if type = LoadBalancer)

• clusterIP

• clusterIPs

• externalIPs

11

PowerDNS Cloud ControlReference

• externalName

• externalTrafficPolicy

• internalTrafficPolicy

• sessionAffinity

• healthCheckNodePort

• sessionAffinityConfig

• labels

These parameters directly expose Kubernetes’ configuration equivalents, for their usage &

accepted values please refer to: https://kubernetes.io/docs/reference/kubernetes-api/
service-resources/service-v1/

5.1 Example: Exposing via NodePort

To expose dnsdist via a NodePort, you can specify the appropriate type. In this example, both

UDP & TCP will be exposed via a NodePort, where the NodePort will be randomly selected from

the node-port range:

dnsdists:
mydnsdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

packetcache:
maxEntries: 200000

service:
type: NodePort

You can also specify the NodePort which you want to use, for example:

dnsdists:
mydnsdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

packetcache:
maxEntries: 200000

service:
type: NodePort
ports:
udp:
port: 53
protocol: UDP
nodePort: 30053

tcp:
port: 53

(continues on next page)

12

https://kubernetes.io/docs/reference/kubernetes-api/service-resources/service-v1/
https://kubernetes.io/docs/reference/kubernetes-api/service-resources/service-v1/

PowerDNS Cloud ControlReference

(continued from previous page)

protocol: TCP
nodePort: 30053

5.2 Example: Exposing via LoadBalancer

To expose dnsdist via a LoadBalancer, you can specify the appropriate type. When ‘LoadBal-

ancer’ is configured as type, it will create the default ClusterIP Service + 1 LoadBalancer Service

for each specified port. This is done to satisfy a Kubernetes constraint regarding LoadBalancer

objects when multiple protocols are requested.

In this example, both the default UDP & TCP ports will be exposed via a LoadBalancer Service

(MetalLB annotation provided as example, substitute with annotations required by your Load-

Balancer provider) on port 53:

dnsdists:
mydnsdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

packetcache:
maxEntries: 200000

service:
type: LoadBalancer
annotations:
metallb.universe.tf/address-pool: name_of_pool

If necessary, you can also request a specific LoadBalancer IP, as shown in the following example:

dnsdists:
mydnsdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

packetcache:
maxEntries: 200000

service:
type: LoadBalancer
annotations:
metallb.universe.tf/address-pool: name_of_pool

loadBalancerIP: 12.34.56.78

13

PowerDNS Cloud ControlReference

5.3 Example: Exposing via LoadBalancer with mixed protocols

By default, a separate LoadBalancer service will be created per protocol (tcp & udp for dnsdist).

If your cluster has the ‘MixedProtocolLBService’ feature gate enabled you can force a single LB

to be created with both protocols using the ‘lbMixedProtocol’ flag:

dnsdists:
mydnsdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

packetcache:
maxEntries: 200000

service:
type: LoadBalancer
lbMixedProtocol: true

5.4 Example: Separate LoadBalancers for IPv4 & IPv6 in a dualstack

cluster

If you run a dualstack cluster, you can opt to have a separate LoadBalancer created for each IP

family (IPv4 & IPv6). This can be done using the ‘lbPerIPFamily’ flag:

dnsdists:
mydnsdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

packetcache:
maxEntries: 200000

service:
type: LoadBalancer
lbPerIPFamily: true

This will create 4 LoadBalancer services, namely:

• TCP-IPv4

• UDP-IPv4

• TCP-IPv6

• UDP-IPv6

If your cluster has the ‘MixedProtocolLBService’ feature gate enabled, you can use the ‘lbMixed-

Protocol’ flag to have this reduced to an IPv4 LoadBalancer and an IPv6 LoadBalancer, each

with both TCP & UDP supported:

dnsdists:
mydnsdist:

(continues on next page)

14

PowerDNS Cloud ControlReference

(continued from previous page)

replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

packetcache:
maxEntries: 200000

service:
type: LoadBalancer
lbMixedProtocol: true
lbPerIPFamily: true

15

PowerDNS Cloud ControlReference

6 Exposing auth API

By default a set of auth instances will not have an Ingress object created. If you wish to expose

auth’s API you can do so by configuring the Ingress object.

Note: We highly recommend providing the necessary stickiness annotations to any created

Ingress object.

For these examples we will assume the following auth instance is to be exposed:

auths:
myauth:
replicas: 2

If the above is deployed, 2 replicas of auth will be created, but no Ingress object will exist. To

add an Ingress, use the following additional config:

auths:
myauth:
replicas: 2
api:
ingress:

ingressClassName: Name of the Ingress Class - omit this if you wish to use the␣
→˓default Ingress Class or prefer to use the deprecated method of using annotations

enabled: true
annotations:
<Annotations required by your Ingress controller>

hosts:
- <Hosts on which to have the Ingress listen>

tls:
- secretName: <Secret containing certificates - if HTTPS is desired>
hosts:
- <Hosts for which HTTPS is desired>

6.1 NGINX Example: HTTP

Example for plain HTTP using nginx Ingress Controller for hostmyhost.mydomain.com using the
ingressClassName nginx:
auths:
myauth:
replicas: 2
api:
ingress:

enabled: true

(continues on next page)

16

PowerDNS Cloud ControlReference

(continued from previous page)

ingressClassName: nginx
hosts:
- myhost.mydomain.com

6.2 NGINX Example: HTTPS with cert-manager

Example for HTTPS using nginx Ingress Controller & certificates generated into a secret

named auth-api-certs by a cert-manager cluster issuer named letsencrypt-prod on host my-host.mydomain.com:
auths:
myauth:
replicas: 2
api:
ingress:

enabled: true
ingressClassName: nginx
annotations:
cert-manager.io/cluster-issuer: letsencrypt-prod

hosts:
- myhost.mydomain.com

tls:
- secretName: auth-api-certs
hosts:
- myhost.mydomain.com

6.3 NGINX Example: HTTP with stickiness using cookies

Example for HTTP using nginx Ingress Controller & stickiness using a cookie named ccroute. This
can be a reliable way of ensuring stickiness if the clients connecting to the Ingress are capable

of handling cookies.

auths:
myauth:
replicas: 2
api:
ingress:

enabled: true
ingressClassName: nginx
annotations:
nginx.ingress.kubernetes.io/affinity: "cookie"
nginx.ingress.kubernetes.io/session-cookie-name: "ccroute"
nginx.ingress.kubernetes.io/session-cookie-expires: "172800"
nginx.ingress.kubernetes.io/session-cookie-max-age: "172800"

hosts:
- myhost.mydomain.com

17

PowerDNS Cloud ControlReference

6.4 NGINX Example: HTTP with stickiness using upstream-hash-by

Example for HTTP using nginx Ingress Controller & stickiness using consistent hashing. This can
be a reliable way of ensuring stickiness if the clients connecting to the Ingress can not be relied

upon to handle cookies.

auths:
myauth:
replicas: 2
api:
ingress:

enabled: true
ingressClassName: nginx
annotations:
nginx.ingress.kubernetes.io/upstream-hash-by: "$binary_remote_addr"

hosts:
- myhost.mydomain.com

18

PowerDNS Cloud ControlReference

7 Labels & Annotations

To add labels & annotations to objects you can use several layers of configuration. To add labels

& annotations to all pods or services you can use the following top-level configuration items:

• podAnnotations: Annotations to be added to each Pod (default: {})
• podLabels: Labels to be added to each Pod (default: {})
• serviceLabels: Labels to be added to each Service object (default: {})

Alternatively, you can also add labels & annotations to all instances of a specific type, for exam-

ple:

Labels on dnsdist pods & services
dnsdist:

podLabels:
mylabel: label_value

serviceLabels:
mylabel: label_value

Annotations on Auth pods
auth:

podAnnotations:
my.example.com/annotation: annotation_value
my.example.com/moreannotations: another_value

Labels on Recursor services
recursor:
serviceLabels:
mylabel: label_value

Or you can add labels & annotations specifically to a set of instances, for example:

dnsdist instances with pod & service labels
dnsdists:
mydnsdist:
podLabels:
mylabel: my_value

replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

service:
labels:
my_service_label: some_value
another_label: another_value

(continues on next page)

19

PowerDNS Cloud ControlReference

(continued from previous page)

Recursor instances with annotations
recursors:
myrecursor:
podAnnotations:
my.example.com/anno1: annotation_value
my.example.com/anno2: another_value

replicas: 2

7.1 Labeling services with multiple ports

There are 2 types of service configurations which can lead to the creation of multiple service

objects for the same set of instances, namely:

• Services of type: LoadBalancer
• Services with: servicePerPort: true

To give both service objects the same labels you can use the above documented labels: config-
uration item on the parent service: item.
However, if you wish to configure different labels for each of these services, you can go one

step further and define the labels for each port, for example:

dnsdist instances with pod & service labels
dnsdists:
mydnsdist:
replicas: 2
pools:
default:

serverGroups:
- group: recursor

service:
labels:
service.label/generic: some_value

type: LoadBalancer
externalTrafficPolicy: Local
ports:
udp:
labels:
service.label/udp: udp_label_value

tcp:
labels:
service.label/tcp: tcp_label_value

This will lead to the following labels on each service:

• dnsdist-mydnsdist-lb-tcp: Has labels service.label/generic & service.label/tcp
• dnsdist-mydnsdist-lb-udp: Has labels service.label/generic & service.label/udp

20

PowerDNS Cloud ControlReference

7.2 Precedence of labeling & annotating

Since you can add labels & annotations at multiple levels, it is important to understand the

order of precedence. In CloudControl, the order is as follows:

(for Services: Port-specific labels) > Instance-specific labels/annotations > Instance-type la-

bels/annotations > top-level labels/annotations

The precedence is only used to pick a label/annotation value if the exact name of a la-

bel/annotation is defined at multiple levels. If labels/annotations are defined at different levels

with different names, they are all added to the final set of labels/annotations on an object.

21

PowerDNS Cloud ControlReference

8 Security contexts

By default Cloud Control deploys all Pods with the following security context:

securityContext:
fsGroup: 953
runAsUser: 953
runAsGroup: 953

And all containers have the following applied:

securityContext:
readOnlyRootFilesystem: true
allowPrivilegeEscalation: false

The Pod securityContext and/or Container securityContext can be overwritten on a specific set of
instances or globally for all Pods/Containers deployed as part of Cloud Control.

8.1 Configuring a global Pod security context

To overwrite the Pod securityContext for all instances you can add a podSecurityContext at the
top-level:

podSecurityContext:
runAsUser: 1000953

dnsdists:
mydnsdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

recursors:
myrecursor:
replicas: 2

Since the configuration of this podSecurityContext overwrites the full default Pod securityCon-

text, this leads to the following differences compared to the defaults:

• fsGroup - This is no longer present, so it is dropped from the Pod security context

• runAsUser - This is now set to ‘1000953’

• runAsGroup - This is no longer present, so it is dropped from the Pod security context

22

PowerDNS Cloud ControlReference

Notes:

• When overriding the Pod securityContext, make sure you always specify a runAsUser or
have your platform assign one automatically

• Any field supported by Kubernetes in a Pod-level securityContext can be configured here

8.2 Configuring a Pod security context for a specific set of instances

To overwrite the Pod securityContext for a set of instances you can add a podSecurityContext on
the instance level:

recursors:
myrecursor:
replicas: 2
podSecurityContext:

runAsUser: 1000953

8.3 Precedence of podSecurityContext

Since you can configure podSecurityContext at multiple levels, it is important to understand the

order of precedence. In CloudControl, the order is as follows:

Instance-specific podSecurityContext > top-level podSecurityContext > default podSecurityCon-

text

Note: The podSecurityContext configurations are not merged into each other. If you specify

a podSecurityContext on an instance it will fully replace a podSecurityContext of lower prece-

dence.

8.4 Configuring a global Container security context

To overwrite the Container securityContext for all instances you can add a containerSecurityCon-text at the top-level:
containerSecurityContext:

capabilities:
drop:
- ALL

dnsdists:
mydnsdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

recursors:
myrecursor:
replicas: 2

23

PowerDNS Cloud ControlReference

Since the configuration of this containerSecurityContext overwrites the full default Container

securityContext, this leads to the following differences compared to the defaults:

• allowPrivilegeEscalation - This is no longer present, so it is dropped from the Container

security context

• capabilities - This is now set to drop ‘ALL’ capabilities

• readOnlyRootFilesystem - This is no longer present, so it is dropped from the Container

security context

Notes:

• Any field supported by Kubernetes in a Container-level securityContext can be configured

here

8.5 Configuring a Container security context for a specific set of in-

stances

To overwrite the PContainerod securityContext for a set of instances you can add a container-SecurityContext on the instance level:
recursors:
myrecursor:
replicas: 2
containerSecurityContext:

capabilities:
drop:
- ALL

8.6 Precedence of containerSecurityContext

Since you can configure containerSecurityContext at multiple levels, it is important to under-

stand the order of precedence. In CloudControl, the order is as follows:

Instance-specific containerSecurityContext > top-level containerSecurityContext > default con-

tainerSecurityContext

Note: The containerSecurityContext configurations are not merged into each other. If you spec-

ify a containerSecurityContext on an instance it will fully replace a containerSecurityContext of

lower precedence.

24

PowerDNS Cloud ControlReference

9 Storage

By default Cloud Control deploys all Pods with storage tailored for specific usecases, mostly

with read-only privileges. If you wish to utilise storage for additional activities, you can configure

additional storage to be available on Pods. Example usage of such additional storage could be

(but is not limited to):

• Dumping cache to file for inspection

• Exporting zone(s) to a file

Additional storage can be configured at 2 levels:

• Global: Available on all Pods

• Instance Set: All Pods of a dnsdist, recursor or auth deployment

The following chapters show how these can both be configured.

9.1 Defaults

Additional volumes follow these defaults:

• additional volumes are mounted only to containers running PowerDNS products:

– dnsdist: The dnsdist container
– recursor: The recursor container
– auth: the auth container + (if applicable) the lightning stream ls container

• additional volumes are mounted to containers with read-write permissions

These defaults can be modified using the configuration options below.

9.2 Global

To configure additional storage for all instances in a Cloud Control installation you can add avolumes at the top-level:
volumes:

- name: example
mountPath: /example
volumeSource:
emptyDir: {}

Each entry in volumesmust always have the following parameters:
25

PowerDNS Cloud ControlReference

• name: Name of the volume

• mountPath: Path to which the volume will be mounted (make sure this path is not already

in use by an internal Cloud Control volume)

• volumeSource: A valid Kubernetes VolumeSource
Optional parameters:

• allContainers - If the volume is mounted to all containers in a Pod (Default: false).
• mountPropagation - A valid KubernetesmountPropagation value
• readOnly - If the volume is mounted as read-only (Default: false)
• subPath - A valid Kubernetes subPath value
• subPathExpr - A valid Kubernetes subpathExpr value

For more information regarding the Kubernetes parameters mentioned above, you can read:

https://kubernetes.io/docs/concepts/storage/volumes/

9.3 Instance Set

To configure additional storage for Pods within a specific set of instances you can add a volumes
on the instance level:

dnsdists:
mydnsdist:
replicas: 2
volumes:
- name: distonly
mountPath: /distonly
volumeSource:
emptyDir:
sizeLimit: 1Gi
medium: "Memory"

- name: all
mountPath: /all
allContainers: true
volumeSource:
emptyDir: {}

The above example adds 2 volumes:

• distonly, mounted at /distonly on the dnsdist container and backed by node memory up
to a capacity of 1 Gi.

• all, mounted at /all on all containers and backed by whichever medium the cluster has
configured as default for emptyDir

26

https://kubernetes.io/docs/concepts/storage/volumes/

PowerDNS Cloud ControlReference

10 Default configuration

10.1 auth

Default settings for all auth instances, configurable under ‘auth’ in helm values.

• affinity: Kubernetes pod affinity (default: {})
• agentSecurityContext: Default Security Context for the agent container (allowPrivi-

legeEscalation: false, readOnlyRootFilesystem: true)
• antiAffinityPreset: Pod anti affinity, if affinity is not set (default: preferred)
• apiKey: API key used to access the /api endpoint, used to configure a static key (default:

generated and stored in a secret)

• authSecurityContext: Default Security Context for the auth container (allowPrivi-

legeEscalation: false, readOnlyRootFilesystem: true)
• initSecurityContext: Default Security Context for the auth-init init container (allowPrivi-

legeEscalation: false, readOnlyRootFilesystem: true)
• lightningStreamSecurityContext: Default Security Context for the ls (lightning stream)

container (allowPrivilegeEscalation: false, readOnlyRootFilesystem: true)
• lsMigratorSecurityContext: Default Security Context for the ls migrator container (al-

lowPrivilegeEscalation: false, readOnlyRootFilesystem: true)
• lsMigratorInitSecurityContext: Default Security Context for the ls migrator init con-

tainer (allowPrivilegeEscalation: false, readOnlyRootFilesystem: true)
• metricsPath: Path on which Prometheus metrics will be served (default: /metrics)
• metricsPort: Port on which Prometheus metrics will be served (default: 8082)
• nodeSelector: Kubernetes pod nodeSelector (default: {})
• podAnnotations: Annotations to be added to each Pod

• podLabels: Labels to be added to each Pod

• serviceLabels: Labels to be added to each Service object (default: {})
• readinessFailureThreshold: When a probe fails, Kubernetes will try this many times be-

fore marking the container as Unready. Updates deployment, resulting in respawn of

recursor pods (default: 2)
• readinessInitialDelaySeconds: Number of seconds after the containers have started be-

fore readiness probes are initiated. Updates deployment, resulting in respawn of recursor

pods. (default: 5)

27

PowerDNS Cloud ControlReference

• readinessPeriodSeconds: How often (in seconds) to perform the readiness probes. Up-

dates deployment, resulting in respawn of recursor pods (default: 2)
• readinessStateProbeInterval: How often (in seconds) the agent will judge the health

state of the recursor agent. (default: 2)
• readinessSuccessThreshold: Minimum consecutive succesfull probes before a con-

tainer is marked Ready. Updates deployment, resulting in respawn of recursor pods (de-

fault: 2)
• readinessTimeoutSeconds: Number of seconds after which the readiness probes time

out. Updates deployment, resulting in respawn of recursor pods (default: 1)
• replicas: Default number of replicas in a recursor deployment (default: 2)
• tolerations: Default Pod tolerations (default: [])
• webserverACLAllowAll: Allow all inbound traffic to auth webserver, regardless of source

IP (default: true)
• webserverACL: Netmasks to allow webserver traffic from (default: 127.0.0.1/32,192.168.0.0/16, 10.0.0.0/8, 172.16.0.0/12, ::1, fc00::/7)
• webserverPassword: Instead of generating a password for the webserver, set a static

one (default: generated and stored in a secret)

• hpa: (Horizontal Pod Autoscaler defaults)

– enabled: Enable or disable the HPA (default: false)
– minReplicas: Minimum # of replicas (default: 2)
– maxReplicas: Maximum # of replicas (default: 4)
– metrics: Metric(s) upon which to make decisions regarding scaling. Must

be an array of MetricSpec (https://kubernetes.io/docs/reference/generated/
kubernetes-api/v1.22/#metricspec-v2beta2-autoscaling). Examples are in the
helm values.

– behavior: Behavior of the HPA, must be instance of HorizontalPodAutoscalerBe-

havior (https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.
22/#horizontalpodautoscalerspec-v2beta2-autoscaling).

• agentResources: (auth agent resource allocation defaults)

– limits: (Limit amounts)

* cpu: Limit amount of CPU (Kubernetes default)

* memory: Limit amount of memory (Kubernetes default)

– requests: (Request amounts)

* cpu: Request amount of CPU (Kubernetes default)

* memory: Request amount of memory (Kubernetes default)

• resources: (auth resource allocation defaults)

– limits: (Limit amounts)

* cpu: Limit amount of CPU (Kubernetes default)

* memory: Limit amount of memory (Kubernetes default)

28

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#metricspec-v2beta2-autoscaling
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#metricspec-v2beta2-autoscaling
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#horizontalpodautoscalerspec-v2beta2-autoscaling
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#horizontalpodautoscalerspec-v2beta2-autoscaling

PowerDNS Cloud ControlReference

– requests: (Request amounts)

* cpu: Request amount of CPU (Kubernetes default)

* memory: Request amount of memory (Kubernetes default)

• lightningStreamResources: (LightningStream resource allocation defaults)

– limits: (Limit amounts)

* cpu: Limit amount of CPU (Kubernetes default)

* memory: Limit amount of memory (Kubernetes default)

– requests: (Request amounts)

* cpu: Request amount of CPU (Kubernetes default)

* memory: Request amount of memory (Kubernetes default)

• lightningStream: (LightningStream defaults)

– logLevel: Loglevel for LightningStream containers (default: info, available options:debug, info, warning, error, fatal)

10.2 dnsdist

Default settings for all dnsdist instances, configurable under ‘dnsdist’ in helm values.

• aclAdd: Netmasks allowed to access dnsdist, in addition to the loopback, RFC1918 and

other local addresses. Only applicable if aclAllowAll is false (default: [])
• aclAllowAll: Allow all inbound traffic to dnsdist, regardless of source IP. (default: true)
• affinity: Kubernetes pod affinity (default: {})
• agentSecurityContext: Default Security Context for the agent container (allowPrivi-

legeEscalation: false, readOnlyRootFilesystem: true)
• antiAffinityPreset: Pod anti affinity, if affinity is not set (default: preferred)
• apiKey: API key used to access the /api endpoint, used to configure a static key (default:

generated and stored in a secret)

• consistentHashingBalancingFactor: Set the maximum imbalance between the number

of outstanding queries intended for a given server, based on its weight, and the actual

number, when using the chashed consistent hashing load-balancing policy. Default is 0,

which disables the bounded-load algorithm. (default: 0)
• dnsdistSecurityContext: Default Security Context for the dnsdist container (allowPrivi-

legeEscalation: false, readOnlyRootFilesystem: true)
• do53Locals: Default amount of Do53 listen sockets per dnsdist pod (default: 1)
• do53TcpFastOpenQueueSize: Default size of the TCP Fast Open queue on Do53 listen

sockets (Dnsdist default)

• do53TcpListenQueueSize: Default size of the listen queue on Do53 listen sockets (Dns-

dist default)

• dohLocals: Default amount of listen sockets per DoH listener (default: 1)

29

PowerDNS Cloud ControlReference

• dotLocals: Default amount of listen sockets per DoT listener (default: 1)
• initSecurityContext: Default Security Context for the dnsdist-init init container (allow-

PrivilegeEscalation: false, readOnlyRootFilesystem: true)
• metricsPath: Path on which Prometheus metrics will be served (default: /metrics)
• metricsPort: Port on which Prometheus metrics will be served (default: 8082)
• nodeSelector: Kubernetes pod nodeSelector (default: {})
• podAnnotations: Annotations to be added to each Pod

• podLabels: Labels to be added to each Pod

• podSecurityContext: Kubernetes Pod security context (default: 953 as fsGroup, runA-
sUser & runAsGroup)

• port: Port on which dnsdist will listen for Do53 traffic (default: 5353)
• readinessDo53ProbeInterval: How often (in seconds) the agent will judge the health

state of dnsdist via tests against the Do53 listeners. (default: 2)
• readinessDo53QDomain: Domain used in the query to judge whether the Do53 listeners

of a dnsdist container are healthy and ready for traffic. (default: a.root-servers.net)
• readinessDo53QTimeout: Number of seconds after which the query used to judge

whether the Do53 listeners of a dnsdist container are healthy and ready for traffic time

out. (default: 1)
• readinessDo53QType: Type of query used to judge whether the Do53 listeners of a dns-

dist container are healthy and ready for traffic. (default: A)
• readinessFailureThreshold: When a probe fails, Kubernetes will try this many times be-

fore marking the container as Unready. Updates deployment, resulting in respawn of

dnsdist pods (default: 2)
• readinessInitialDelaySeconds: Number of seconds after the containers have started be-

fore readiness probes are initiated. Updates deployment, resulting in respawn of dnsdist

pods. (default: 5)
• readinessPeriodSeconds: How often (in seconds) to perform the readiness probes. Up-

dates deployment, resulting in respawn of dnsdist pods (default: 2)
• readinessStateProbeInterval: How often (in seconds) the agent will judge the health

state of the dnsdist agent. (default: 2)
• readinessSuccessThreshold: Minimum consecutive succesfull probes before a con-

tainer is marked Ready. Updates deployment, resulting in respawn of dnsdist pods (de-

fault: 2)
• readinessTimeoutSeconds: Number of seconds after which the readiness probes time

out. Updates deployment, resulting in respawn of dnsdist pods (default: 1)
• replicas: Default number of replicas in a dnsdist deployment (default: 2)
• roundRobinFailOnNoServer: By default the roundrobin load-balancing policy will still try

to select a backend even if all backends are currently down. Setting this to true will make

the policy fail and return that no server is available instead. (default: false)
• rpcServerSecurityContext: Default Security Context for the rpc-server container (allow-

PrivilegeEscalation: false, readOnlyRootFilesystem: true)
30

PowerDNS Cloud ControlReference

• serverPurgeDelay: Delay (in seconds) after which replaced servers are purged from dns-

dist (default: 5)
• servFailWhenNoServer: If true, return a ServFail when no servers are available, instead

of the default behaviour of dropping the query. (default: false)
• serviceLabels: Labels to be added to each Service object (default: {})
• stateSecurityContext: Default Security Context for the dnsdist-state init container (al-

lowPrivilegeEscalation: false, readOnlyRootFilesystem: true)
• stekLength: Length of a single STEK ticket, in bytes (default: 80)
• stekMaxAge: Interval in seconds at which a new STEK ticket should be generated and the

oldest one removed (default: 43200)
• stekPollInterval: Interval in seconds at which a check should be performed for an up-

dated set of STEK tickets (default: 15)
• stekCount: Number of STEK tickets to keep stored. Recommended to keep this value at

least at >= 2 (default: 5)
• tolerations: Default Pod tolerations (default: [])
• webserverACLAllowAll: Allow all inbound traffic to dnsdist webserver, regardless of

source IP (default: true)
• webserverACL: Netmasks to allow webserver traffic from (default: 127.0.0.1/32,192.168.0.0/16, 10.0.0.0/8, 172.16.0.0/12, ::1, fc00::/7)
• webserverPassword: Instead of generating a password for the webserver, set a static

one (default: generated and stored in a secret)

• weightedBalancingFactor: Set the maximum imbalance between the number of out-

standing queries intended for a given server, based on its weight, and the actual number,

when using the whashed or wrandom load-balancing policy. Default is 0, which disables

the bounded-load algorithm. (default: 0)
• ecs: (dnsdist ECS functions)

– setECSOverride: Whether to override an existing EDNS Client Subnet option present

in the query (only effective when the backend server has annotation useClientSubnet

= true). (Dnsdist default)

– setECSSourcePrefixV4: Truncate the requestors IPv4 address to this length, in bits

(only effective when the backend server has annotation useClientSubnet = true).

(Dnsdist default)

– setECSSourcePrefixV6: Truncate the requestors IPv6 address to this length, in bits

(only effective when the backend server has annotation useClientSubnet = true).

(Dnsdist default)

• hpa: (Horizontal Pod Autoscaler defaults)

– enabled: Enable or disable the HPA (default: false)
– minReplicas: Minimum # of replicas (default: 2)
– maxReplicas: Maximum # of replicas (default: 4)
– metrics: Metric(s) upon which to make decisions regarding scaling. Must

be an array of MetricSpec (https://kubernetes.io/docs/reference/generated/

31

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#metricspec-v2beta2-autoscaling
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#metricspec-v2beta2-autoscaling

PowerDNS Cloud ControlReference

kubernetes-api/v1.22/#metricspec-v2beta2-autoscaling). Examples are in the
helm values.

– behavior: Behavior of the HPA, must be instance of HorizontalPodAutoscalerBe-

havior (https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.
22/#horizontalpodautoscalerspec-v2beta2-autoscaling).

• ringBuffers: (Ringbuffer configuration)

– retries: Number of shards to attempt to lock without blocking before giving up and

simply blocking while waiting for the next shard to be available. Defaults to 5 if there

is more than 1 shard, else it defaults to 0. (Dnsdist default)

– shards: Number of shards to use to limit lock contention, defaults to 1. (Dnsdist

default)

– size: Maximum amount of queries to keep in the ringbuffer, defaults to 10000. (Dns-

dist default)

• securityPolling: (Security polling configuration)

– securityPollInterval: Interval between security pollings, in seconds. Defaults to

3600. (Dnsdist default)

– securityPollSuffix: Domain name from which to query security update notifica-

tions. Setting this to an empty string disables secpoll. (Dnsdist default)

• tuning: (dnsdist tuning functions)

– setCacheCleaningDelay: Interval in seconds between two runs of the cache clean-

ing algorithm, removing expired entries. (Dnsdist default)

– setCacheCleaningPercentage: Percentage of the cache that the cache cleaning al-

gorithm will try to free by removing expired entries. By default (100), all expired

entries are removed. (Dnsdist default)

– setMaxTCPClientThreads: Maximum amount of TCP client threads, handling TCP

connections. By default this value is 10, unless more than 10 TCP listen sockets have

been defined. (Dnsdist default)

– setMaxTCPConnectionDuration: Maximum duration of an incoming TCP connec-

tion, in seconds. 0 (the default) means unlimited. (Dnsdist default)

– setMaxTCPConnectionsPerClient: Maximum number of TCP connections per

client. 0 (the default) means unlimited. (Dnsdist default)

– setMaxTCPQueriesPerConnection: Maximum number of queries in an incoming

TCP connection. 0 (the default) means unlimited. (Dnsdist default)

– setMaxTCPQueuedConnections: Maximum number of TCP connections queued

(waiting to be picked up by a client thread), defaults to 1000. 0 means unlimited.

(Dnsdist default)

– setMaxUDPOutstanding: Maximum number of outstanding UDP queries to a given

backend server, defaults to 65535. (Dnsdist default)

– setStaleCacheEntriesTTL: TTL for expired cache entries to be eligible as answer

when no backends are available for a query, in seconds. (Dnsdist default)

– setTCPRecvTimeout: Read timeout on TCP connections from the client, in seconds.

(Dnsdist default)

32

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#metricspec-v2beta2-autoscaling
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#metricspec-v2beta2-autoscaling
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#horizontalpodautoscalerspec-v2beta2-autoscaling
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#horizontalpodautoscalerspec-v2beta2-autoscaling

PowerDNS Cloud ControlReference

– setTCPSendTimeout: Write timeout on TCP connections from the client, in seconds.

(Dnsdist default)

– setUDPTimeout: Maximum time dnsdist will wait for a response from a backend

over UDP, in seconds. Defaults to 2. (Dnsdist default)

• agentResources: (dnsdist agent resource allocation defaults)

– limits: (Limit amounts)

* cpu: Limit amount of CPU (Kubernetes default)

* memory: Limit amount of memory (Kubernetes default)

– requests: (Request amounts)

* cpu: Request amount of CPU (Kubernetes default)

* memory: Request amount of memory (Kubernetes default)

• rpcServerResources: (dnsdist RPC server resource allocation defaults)

– limits: (Limit amounts)

* cpu: Limit amount of CPU (Kubernetes default)

* memory: Limit amount of memory (Kubernetes default)

– requests: (Request amounts)

* cpu: Request amount of CPU (Kubernetes default)

* memory: Request amount of memory (Kubernetes default)

• stateResources: (dnsdist state resource allocation defaults)

– limits: (Limit amounts)

* cpu: Limit amount of CPU (Kubernetes default)

* memory: Limit amount of memory (Kubernetes default)

– requests: (Request amounts)

* cpu: Request amount of CPU (Kubernetes default)

* memory: Request amount of memory (Kubernetes default)

• resources: (dnsdist resource allocation defaults)

– limits: (Limit amounts)

* cpu: Limit amount of CPU (Kubernetes default)

* memory: Limit amount of memory (Kubernetes default)

– requests: (Request amounts)

* cpu: Request amount of CPU (Kubernetes default)

* memory: Request amount of memory (Kubernetes default)

33

PowerDNS Cloud ControlReference

10.3 recursor

Default settings for all recursor instances, configurable under ‘recursor’ in helm values.

• affinity: Kubernetes pod affinity (default: {})
• agentSecurityContext: Default Security Context for the agent container (allowPrivi-

legeEscalation: false, readOnlyRootFilesystem: true)
• antiAffinityPreset: Pod anti affinity, if affinity is not set (default: preferred)
• apiKey: API key used to access the /api endpoint, used to configure a static key (default:

generated and stored in a secret)

• defaultForwardZonePriority: Default priority assigned to an entry in the forward zones

list (default: 100)
• initSecurityContext: Default Security Context for the recursor-init init container (allow-

PrivilegeEscalation: false, readOnlyRootFilesystem: true)
• metricsPath: Path on which Prometheus metrics will be served (default: /metrics)
• metricsPort: Port on which Prometheus metrics will be served (default: 8082)
• nodeSelector: Kubernetes pod nodeSelector (default: {})
• podAnnotations: Annotations to be added to each Pod

• podLabels: Labels to be added to each Pod

• podSecurityContext: Kubernetes Pod security context (default: 953 as fsGroup, runA-
sUser & runAsGroup)

• readinessFailureThreshold: When a probe fails, Kubernetes will try this many times be-

fore marking the container as Unready. Updates deployment, resulting in respawn of

recursor pods (default: 2)
• readinessInitialDelaySeconds: Number of seconds after the containers have started be-

fore readiness probes are initiated. Updates deployment, resulting in respawn of recursor

pods. (default: 5)
• readinessPeriodSeconds: How often (in seconds) to perform the readiness probes. Up-

dates deployment, resulting in respawn of recursor pods (default: 2)
• readinessStateProbeInterval: How often (in seconds) the agent will judge the health

state of the recursor agent. (default: 2)
• readinessSuccessThreshold: Minimum consecutive succesfull probes before a con-

tainer is marked Ready. Updates deployment, resulting in respawn of recursor pods (de-

fault: 2)
• readinessTimeoutSeconds: Number of seconds after which the readiness probes time

out. Updates deployment, resulting in respawn of recursor pods (default: 1)
• recursorSecurityContext: Default Security Context for the recursor container (allowPriv-

ilegeEscalation: false, readOnlyRootFilesystem: true)
• replicas: Default number of replicas in a recursor deployment (default: 2)
• serviceLabels: Labels to be added to each Service object (default: {})
• tolerations: Default Pod tolerations (default: [])

34

PowerDNS Cloud ControlReference

• webserverACLAllowAll: Allow all inbound traffic to recursor webserver, regardless of

source IP (default: true)
• webserverACL: Netmasks to allow webserver traffic from (default: 127.0.0.1/32,192.168.0.0/16, 10.0.0.0/8, 172.16.0.0/12, ::1, fc00::/7)
• webserverPassword: Instead of generating a password for the webserver, set a static

one (default: generated and stored in a secret)

• hpa: (Horizontal Pod Autoscaler defaults)

– enabled: Enable or disable the HPA (default: false)
– minReplicas: Minimum # of replicas (default: 2)
– maxReplicas: Maximum # of replicas (default: 4)
– metrics: Metric(s) upon which to make decisions regarding scaling. Must

be an array of MetricSpec (https://kubernetes.io/docs/reference/generated/
kubernetes-api/v1.22/#metricspec-v2beta2-autoscaling). Examples are in the
helm values.

– behavior: Behavior of the HPA, must be instance of HorizontalPodAutoscalerBe-

havior (https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.
22/#horizontalpodautoscalerspec-v2beta2-autoscaling).

• agentResources: (recursor agent resource allocation defaults)

– limits: (Limit amounts)

* cpu: Limit amount of CPU (Kubernetes default)

* memory: Limit amount of memory (Kubernetes default)

– requests: (Request amounts)

* cpu: Request amount of CPU (Kubernetes default)

* memory: Request amount of memory (Kubernetes default)

• resources: (recursor resource allocation defaults)

– limits: (Limit amounts)

* cpu: Limit amount of CPU (Kubernetes default)

* memory: Limit amount of memory (Kubernetes default)

– requests: (Request amounts)

* cpu: Request amount of CPU (Kubernetes default)

* memory: Request amount of memory (Kubernetes default)

35

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#metricspec-v2beta2-autoscaling
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#metricspec-v2beta2-autoscaling
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#horizontalpodautoscalerspec-v2beta2-autoscaling
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#horizontalpodautoscalerspec-v2beta2-autoscaling

PowerDNS Cloud ControlReference

10.4 resolver

Default settings for resolver instances, configurable under ‘resolver’ in helm values.

• backendDefaultPort: Port on which the endpoints belonging to a resolver partition will

receive traffic (default: 53)
• serviceLabels: Labels to be added to each Service object (default: {})
• servicePort: Port on which a resolver service will listen (unused in normal operation, as

the service is only used to discover the corresponding endpoints). (default: 53)

10.5 zoneControl

Default settings for all ZoneControl instances, configurable under ‘zonecontrol’ in helm values.

• affinity: Kubernetes pod affinity (default: {})
• antiAffinityPreset: Pod anti affinity, if affinity is not set (default: preferred)
• initSecurityContext: Default Security Context for the zc-init init container (allowPrivi-

legeEscalation: false, readOnlyRootFilesystem: true)
• nodeSelector: Kubernetes pod nodeSelector (default: {})
• podAnnotations: Annotations to be added to each Pod

• podLabels: Labels to be added to each Pod

• podSecurityContext: Kubernetes Pod security context (default: 953 as fsGroup, runA-
sUser & runAsGroup)

• replicas: Default number of replicas in a recursor deployment (default: 2)
• serviceLabels: Labels to be added to each Service object (default: {})
• syncJobTTL: Keep finished synchronisation jobs for this amount of seconds before allow-

ing Kubernetes to remove them (default: 86400)
• tolerations: Default Pod tolerations (default: [])
• zcSecurityContext: Default Security Context for the zc container (allowPrivilegeEscala-

tion: false, readOnlyRootFilesystem: true)
• zcOperatorSecurityContext: Default Security Context for the zc operator container (al-

lowPrivilegeEscalation: false, readOnlyRootFilesystem: true)
• operator: (Synchronisation operator defaults)

– podAnnotations: Annotations to be added to each Pod

– podLabels: Labels to be added to each Pod

• resources: (auth resource allocation defaults)

– limits: (Limit amounts)

* cpu: Limit amount of CPU (Kubernetes default)

* memory: Limit amount of memory (Kubernetes default)

– requests: (Request amounts)

36

PowerDNS Cloud ControlReference

* cpu: Request amount of CPU (Kubernetes default)

* memory: Request amount of memory (Kubernetes default)

37

PowerDNS Cloud ControlReference

11 Instances

11.1 auths

Configuration of auth instances

Key: name (Name of the auth instance)

11.1.1 Parameters

• affinity: Kubernetes Pod affinity

• agentLogLevel: Agent log level, defaults to info. Available options: debug, info, warn, error
• agentLogFormat: Agent log format, defaults to text. Available options: text, json
• agentResources: Resources allocated to the ‘agent’ container

• antiAffinityPreset: Pod anti affinity preset (Accepted values: preferred or required)
• apiKey: API key used to access the /api endpoint, used to configure a static key (default:

generated and stored in a secret)

• containerSecurityContext: Container security context for all containers within a Pod

(see ‘Security contexts’ chapter)

• hostNetwork: Use host networking for auth pods

• initResources: Resources allocated to the ‘auth-init’ container

• lightningStreamResources: Resources allocated to the ‘ls’ container

• nodeSelector: Kubernetes pod nodeSelector

• podAnnotations: Annotations to be added to each Pod

• podLabels: Labels to be added to each Pod

• podSecurityContext: Kubernetes Pod security context (see ‘Security contexts’ chapter)

• replicas: Default number of replicas in a auth deployment (default: 2)
• resources: Resources allocated to the ‘auth’ container

• revisionHistoryLimit: Default 'revisionHistoryLimit' for auth deployments (default: 0)
• tolerations: Kubernetes Pod tolerations

• volumes: List of additional volumes (see Storage chapter)

38

PowerDNS Cloud ControlReference

11.1.2 Parameter Sets

• api (Configuration of access to the auth API endpoint)

– ingress: Ingress object to expose the auth API endpoint via an ingress managed by

an ingress controller (For formatting example, see the Exposing auth API chapter)
– service: Service object to expose the auth API endpoint (For formatting example,

see the Exposing dnsdist chapter, which covers the service format to add ClusterIP,
NodePort or LoadBalancer services)

• dnsdist (Settings to be applied to each auth instance when added to dnsdist as a server)

– addXPF: Add the client's IP address and port to the query, along with the original

destination address and port. Default is disabled (0)

– checkClass: Number to use as QCLASS in the health-check query, default is

DNSClass.IN

– checkInterval: The time in seconds between health checks

– checkName: String to use as QNAME in the health-check query, default is "a.root-

servers.net."

– checkTimeout: The timeout (in milliseconds) of a health-check query, default to

1000 (1s)

– checkType: String to use as QTYPE in the health-check query, default is "A"

– disableZeroScope: Disable the EDNS Client Subnet 'zero scope' feature, which does

a cache lookup for an answer valid for all subnets (ECS scope of 0) before adding ECS

information to the query and doing the regular lookup. This requires the parseECS
option of the corresponding cache to be set to true

– healthCheckMode: Type of health-check to perform, default is auto which is con-
figured using the checkName, checkType, etc parameters. Alternatives are up (no
healthcheck - always available for traffic) and down (no healthcheck - never available
for traffic)

– maxCheckFailures: Allow this amount of check failures before declaring the back-

end down, default is 1

– mustResolve: Set to true when the health check MUST return a RCODE different

from NXDomain, ServFail and Refused. Default is false, meaning that every RCODE

except ServFail is considered valid

– order: The order of servers in this set, used by the leastOutstanding and firstAvailable
policies

– qps: Limit the number of queries per second to this amount, when using thefirstAvailable policy
– reconnectOnUp: Close and reopen the sockets when a server transits from Down

to Up. This helps when an interface is missing when dnsdist is started. Default is

false

– retries: The number of TCP connection attempts to servers in this set, for a given

query

39

PowerDNS Cloud ControlReference

– rise: Require NUM consecutive successful checks before declaring the backend up,

default is 1

– setCD: Set the CD (Checking Disabled) flag in the health-check query, default is false

– sockets: Number of sockets (and thus source ports) used toward the backend

server, defaults to 1

– source: Name of the interface which Dnsdist will use to try to send traffic to this

Recursor

– tcpConnectTimeout: The timeout (in seconds) of a TCP connection attempt

– tcpFastOpen: Whether to enable TCP Fast Open

– tcpRecvTimeout: The timeout (in seconds) of a TCP read attempt

– tcpSendTimeout: The timeout (in seconds) of a TCP write attempt

– useClientSubnet: Add the client's IP address in the EDNS Client Subnet option when

forwarding the query to this backend

– useProxyProtocol: Add a proxy protocol header to the query, passing along the

client's IP address and port along with the original destination address and port.

Default is false

– weight: The weight of servers in this set, used by thewrandom, whashed and chashed
policies, default is 1

• config (Auth configuration, any configuration item listed in the auth documentation

(https://doc.powerdns.com/authoritative/settings.html) can be referenced here. Set-
tings which are explicitly ignored due to conflicts with Cloud Control are filtered by 'web-

server*', 'local*', 'disable-syslog', 'daemon', 'chroot', 'socket*', 'config*', 'primary', 'sec-

ondary' and 'autosecondary')

• hpa (Horizontal Pod Autoscaler - see helm values ‘auth.hpa’ for examples)

– enabled: Enable or disable the HPA (default: false)
– minReplicas: Minimum # of replicas (default: 2)
– maxReplicas: Maximum # of replicas (default: 4)
– metrics: Metric(s) upon which to make decisions regarding scaling. Must

be an array of MetricSpec (https://kubernetes.io/docs/reference/generated/
kubernetes-api/v1.22/#metricspec-v2beta2-autoscaling). Examples are in the
helm values.

– behavior: Behavior of the HPA, must be instance of HorizontalPodAutoscalerBe-

havior (https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.
22/#horizontalpodautoscalerspec-v2beta2-autoscaling).

• postgres (Settings to be applied to each postgres cluster/database when an auth deploy-

ment requests a postgres operator-managed database)

– parameters.max_connections: Max connections parameter (default: 128)
– storage.size: Size of the volume to request for each Postgres pod (default: 5Gi)
– storage.storageClassName: Name of the Storage Class for the volumes in which

Postgres data will be stored (default: unset, which means the Kubernetes cluster’s

default sotrage class)

40

https://doc.powerdns.com/authoritative/settings.html
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#metricspec-v2beta2-autoscaling
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#metricspec-v2beta2-autoscaling
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#horizontalpodautoscalerspec-v2beta2-autoscaling
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#horizontalpodautoscalerspec-v2beta2-autoscaling

PowerDNS Cloud ControlReference

– resources.limits.cpu: Limit amount of CPU (default: 250m)
– resources.limits.memory: Limit amount of memory (default: 256Mi)
– resources.requests.cpu: Request amount of CPU (default: 500m)
– resources.requests.memory: Request amount of memory (default: 512m)
– nodeAffinity: Kubernetes node affinity (Note: Only configures the subsetnodeAffinity of the parent affinity. See https://kubernetes.io/docs/concepts/
scheduling-eviction/assign-pod-node/#node-affinity)

11.1.3 Backends

When deploying Auth as part of CloudControl there are several backends you can choose (and

combine, multiple backends is supported):

• GeoIP: This backend allows visitors to be sent to a server closer to them, with no appre-

ciable delay, as would otherwise be incurred with a protocol level redirect.

• LightningStream: This backend allows synchronisation of multiple instances via an s3

bucket. This can be done within a single datacenter or spread over multiple datacenters.

• MySQL: This backend allows storing zones in a MySQL database.

• Postgres: This backend allows storing zones in a Postgres database, either pre-existing

on your cluster or created at runtime using a Postgres Operator.

11.1.3.1 Postgres (pre-existing)

If you have an existing Postgres database available, you can configure a backend to utilize it.

Configuring a pre-existing Postgres database can be done via the following configuration:

Format:

backends:
- type: postgres
host: host-of-postgres-cluster
dbname: auth
user: some_user
password: some_user_password

Available parameters:

• type –Must be set to postgres
• host - Host of the Postgres cluster/service

• port - Port over which to access the Postgres database (Optional, default: 5432)
• dbname - Name of the database

• user - User with which to connect

• password - Password for user
• sslmode - Postgres sslmode to use while connecting (Optional, omitted if no value is pro-
vided)

41

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#node-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#node-affinity

PowerDNS Cloud ControlReference

• dnssec - Whether or not to enable DNSSEC processing for this backend (Optional, default:false)
Note: Cloud Control will manage the schema in the Postgres database. Before an Auth con-

tainer starts, an init container checks the schema and creates/updates it if necessary.

11.1.3.2 Postgres (Operator-managed)

If you have deployed the postgres-operator chart to your Kubernetes cluster, you can config-

ure a backend to use a operator-managed Postgres database. Configuring such a Postgres

database can be done via the following configuration:

Format:

backends:
- type: postgres
operator: true

Available parameters:

• type –Must be set to postgres
• operator - Must be set to true

The Postgres database which is created utilizes the default values which are exposed via the

helm values in auth.postgres.

11.1.3.3 MySQL

If you have an existing MySQL database available, you can configure a backend to utilize it.

Configuring a pre-existing MySQL database can be done via the following configuration:

Format:

backends:
- type: mysql
host: host-of-mysql-cluster
dbname: auth
user: some_user
password: some_user_password

Available parameters:

• type –Must be set tomysql
• host - Host/IP of the MySQL cluster/service

• port - Port over which to access the MySQL database (Optional, default: 3306)
• dbname - Name of the database

• user - User with which to connect

• password - Password for user
• ssl - Can be set to yes to force connecting via SSL (Optional, default behaviour is to use
SSL if the server announces this capability)

• group - Group to connect as (Optional, default: client)
42

PowerDNS Cloud ControlReference

• dnssec - Whether or not to enable DNSSEC processing for this backend (Optional, default:no)
• innodbReadCommitted - Use the InnoDB READ-COMMITTED transaction isolation level

(Optional, default: yes)
• timeout - Timeout in seconds for each attempt to read from, or write to the server. A

value of 0 will disable the timeout (Optional, default: 10)
Note: Cloud Control will manage the schema in the MySQL database. Before an Auth container

starts, an init container checks the schema and creates/updates it if necessary.

11.1.3.4 GeoIP

Configuring a GeoIP backend requires configuring the following options:

Format:

backends:
- type: geoip
databases: <Configuration of one or more GeoIP databases>
domains: <Configuration of domains>

Configuring domains: Please refer to the PowerDNS Authoritative Server documentation at
https://doc.powerdns.com/authoritative/backends/geoip.html#keys-explained

Configuring databases:
The databases used by the GeoIP backend are MMDB files, which allows you to use databases

from several sources:

• MaxMind – A provider of GeoIP databases

• Custom - A database built by the Auth init container based on data you provide in the

Helm configuration values

11.1.3.5 GeoIP - MaxMind Database

Configuring a GeoIP backend using a MaxMind database can be done via 2 methods:

• HTTP - Download the database using HTTP

• OCI - Download the database from an OCI-enabled registry, using the ORAS Client

11.1.3.6 GeoIP - MaxMind Database - HTTP

Format:

databases:
- name: MyDatabase
type: http
url: https://my_host/folder/my-database.mmdb
insecure: false
headers:
<List of additional headers to be passed>

(continues on next page)

43

https://doc.powerdns.com/authoritative/backends/geoip.html#keys-explained

PowerDNS Cloud ControlReference

(continued from previous page)

params:
<List of additional parameters to be passed, these must be valid Curl parameters>

Explanation of each parameter:

• name - Required, must be unique for this backend

• type - Required, must be http to force a MaxMind HTTP download
• url - Required, full address of the database to be downloaded

• insecure - Optional, set to true if you need to download the database from an HTTPS URL
without valid certificates

• headers - Dict of key: value pairs, where key is the header name and value is the value of
the header

• params - Dict of key: value pairs, where key is the name of the Curl parameter and value is
the value of the parameter

Minimal required configuration for downloading a MaxMind database using HTTP(S):

databases:
- name: MyDatabase
type: http
url: https://some_host/my-database.mmdb

Example using headers & params:

databases:
- name: MyDatabase
type: http
url: https://some_host/my-database.mmdb
headers:

Authorization: Basic bXl1sfdc2VyOm15cGFzetbcvbc3sdfdvcmQ=
params:
proxy: "http://my_user:my_password@some_proxy:8080"

Above example will send a Basic auth header & attempt to connect via the proxysome_proxy:8080

11.1.3.7 GeoIP - MaxMind Database - OCI

Format:

databases:
- name: MyOCIDB
type: oci
artifact: my_registry/repository/geo-city-mmdb:v2.4.0
user: MyUser
token: MyPassword

Explanation of each parameter:

• name - Required, must be unique for this backend

• type - Required, must be oci to force a MaxMind OCI download

44

PowerDNS Cloud ControlReference

• artifact - Required, full address of the database to be downloaded

• user - Required, User with which to connect to the registry

• token - Required, Token/Password for user

11.1.3.8 GeoIP - Custom Database

Configuring a GeoIP backend using a custom database can be done via the following configu-

ration:

databases:
- name: localdb
type: generate
datacenters:

<List of datacenters - see below>

Explanation of each parameter:

• name - Required, must be unique for this backend

• type - Required, must be generate to force a custom database to be generated
• datacenters - Required, must be populated according to the below format

Example datacenter configuration:

- name: Amsterdam
networks:
- 10.0.1.0/24
- 10.0.2.0/24
- 10.0.3.0/24
- 10.0.4.0/24
- 10.0.5.0/24
- 10.0.6.0/24

lat: 52.370216
long: 4.895168

Explanation of each parameter:

• name - Required, must be unique for this datacenter

• networks - Required, list of networks to be assigned to this datacenter

• lat - Required, longitude of this datacenter

• long - Required, latitude of this datacenter

The latitude & longitude are used to calculate distances between datacenters, which is how

the GeoIP backend determines the closest available recipient of traffic. There are many tools

available online to obtain the latitude & longitude of locations.

The following example simulates a setup where we have 2 datacenters, in Amsterdam & Rot-

terdam:

databases:
- name: localdb
type: generate
datacenters:

(continues on next page)

45

PowerDNS Cloud ControlReference

(continued from previous page)

- name: Amsterdam
networks:
- 10.0.1.0/24
- 10.0.2.0/24
- 10.0.3.0/24
- 10.0.4.0/24
- 10.0.5.0/24
- 10.0.6.0/24

lat: 52.370216
long: 4.895168

- name: Rotterdam
networks:
- 10.1.1.0/24
- 10.1.2.0/24
- 10.1.3.0/24
- 10.1.4.0/24
- 10.1.5.0/24
- 10.1.6.0/24

lat: 51.924419
long: 4.477733

11.1.3.9 LightningStream

Configuration of a LightningStream backend primarily requires supplying the details required

to connect to a shared s3 bucket.

Notes:

• Account used to access the s3 bucket must have privileges to read, write & list

• All auth instances that have the same s3 bucket configured will contain the same zones &

records. You cannot share the same s3 bucket amongst auth instances which you intend

to have different data.

• Access and Secret keys must be limited to characters from the Base64 alphabet (defined

in RFC 4648). Usage of characters outside this alphabet can lead to inability to connect to

the s3 bucket.

The format to configure a LightningStream backend:

backends:
- type: ls
access_key: MY_ACCESS_KEY
secret_key: MY_SECRET_KEY
bucket: mybucket
endpoint: https://my.s3.endpoint

Required parameters:

• type - Required, must be ls to force a LightningStream backend
• access_key - Required, access key to authenticate with the endpoint

• secret_key - Required, secret key to authenticate with the endpoint

• bucket - Required, name of the s3 bucket

46

PowerDNS Cloud ControlReference

• endpoint - Required, URL to access the s3 service

Optional parameters:

• cleanupDisabled - Set to true to disable the cleanup mechanism (Default: false)
• cleanupInterval - Interval between cleanup runs (Default: 5m)
• cleanupMustKeepInterval - Determines how long snapshots must be kept after they ap-

pear in the bucket, even if a newer snapshot is available. Defaults to 10m
• cleanupRemoveOldInstancesInterval - Determines when an instance is considered stale

and the latest snapshot for the instance can be considered for removal. Defaults to 168h
(7 days)

• health - Allows for configuration of the error and warning thresholds used to determine

readiness of LightningStream via unreadyIfError, unreadyIfWarning and waitForInitialSync
(see health configuration section below)

• loglevel - Defaults to info. Available options: debug, info, warning, error, fatal
• lmdbEmptyDir - Configuration of the EmptyDir volume used to store LMDB. Defaults to:medium: “Memory”
• lmdbPollInterval - Minimum time between checking for new LMDB transactions. Defaults

to 1s
• lmdbLogStatsInterval - Interval for logging LMDB stats. Defaults to 30m
• mapSize - Size (in megabytes) of the LMDB databases. Defaults to 1000 and can be in-
creased for large datasets

• memoryDownloadedSnapshots - Maximum amount of downloaded snapshots queued in

memory before decompression. Defaults to 3
• memoryDecompressedSnapshots - Maximum amount of decompressed snapshots in

memory before processing. Defaults to 2
• migratorInterval - Time between checks performed by the migrator to see if a migration

is required. Defaults to 5s
• region - Set this to the region associated with your s3 bucket, if your s3 service requires

this

• removeOldSchemaAge - Time since the last successful migration of an old schema before

removing it, if no updates have been made to the schema since then. Defaults to 672h`
• removeOldSchemaEnabled - Whether or not the migrator should clean up old schemas if

they have been migrated successfully and not seen any updates since. Defaults to true
• storageForceSnapshotInterval - Interval between forced snapshots created by an in-

stance, if no changes have been observed. Defaults to 4h
• storagePollInterval - Minimum time between polling the storage backend for new snap-

shots. Defaults to 1s
• storageRetryInterval - Interval to retry a storage operation after failure. Defaults to 5s
• storageRetryCount - Number of times to retry a storage operation after failure, before

giving up (only active if storageRetryForever is false). Defaults to 10

47

PowerDNS Cloud ControlReference

• storageRetryForever - Retry failed storage operations forever before giving up. Defaults

to true
• tls - Allows for configuration of a trusted CA and/or disable certificate validation (see TLSConfiguration section below)
• unreadyIfError - Set readiness of LightingStream container to NotReady if LightningStream
healthz endpoint reports any errors (Default: true)

• unreadyIfWarning - Set readiness of LightingStream container to NotReady if Light-
ningStream healthz endpoint reports any warnings (Default: false)

• waitForInitialSync - Keep readiness of LightningStream container at NotReady until Light-
ningStream has successfully finished the initial sync between the Auth container and the

s3 bucket (Default: true)

LightningStream - TLS Configuration

Valid TLS options are:

• add_system_ca_pool - Whether or not to load the LightningStream image’s embedded

trusted CA certs. Defaults to ‘true’ if the ‘ca’ option is not used. Defaults to ‘false’ when the

‘ca’ option is supplied.

• ca - PEM formatted CA certificate to trust

• insecure_skip_verify - Defaults to ‘false’, set this to ‘true’ to disable certificate validation

Note: Using the ‘insecure_skip_verify’ flag is not recommended for production deployments as

it nullifies the security benefits of using the SSL/TLS certificates on an HTTPS endpoint.

TLS example: Skip certificate validation

backends:
- type: ls
access_key: MY_ACCESS_KEY
secret_key: MY_SECRET_KEY
bucket: mybucket
endpoint: https://my.s3.endpoint
tls:
insecure_skip_verify: true

TLS example: Provide custom CA to trust

backends:
- type: ls
access_key: MY_ACCESS_KEY
secret_key: MY_SECRET_KEY
bucket: mybucket
endpoint: https://my.s3.endpoint
tls:
ca: |
-----BEGIN CERTIFICATE-----
MIICdjCCAhygAwIBAgIQEuVhXI/nMis4pfWxPMvPbDAKBggqhkjOPQQDAjAjMSEw
HwYDVQQDDBhrM3Mtc2VydmVyLWNhQDE2NTI4NjE4NzEwHhcNMjIwNjAxMTIyNTEw
WhcNMjMwNjAxMTIyNTEwWjBWMRUwEwYDVQQKEwxzeXN0ZW06bm9kZXMxPTA7BgNV
BAMMNHN5c3RlbTpub2RlOioubWluaW90ZW5hbnQtaGwubWluaW8uc3ZjLmNsdXN0

(continues on next page)

48

PowerDNS Cloud ControlReference

(continued from previous page)

ZXIubG9jYWwwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAAQnhNTJcv4z8l1mfBlV
+xCyQiyrhZFNFE4GtZ1SuhlRFJj2Ze+LK7ySRHt8DbS75r+eF+GpKGhfhjAA3HXB
KNFNo4H+MIH7MA4GA1UdDwEB/wQEAwIFoDATBgNVHSUEDDAKBggrBgEFBQcDATAM
BgNVHRMBAf8EAjAAMB8GA1UdIwQYMBaAFEpXmMnwHdQ748wFl7IwQbLLyl28MIGk
BgNVHREEgZwwgZmCO21pbmlvdGVuYW50LXBvb2wtMC0wLm1pbmlvdGVuYW50LWhs
Lm1pbmlvLnN2Yy5jbHVzdGVyLmxvY2Fsgh1taW5pby5taW5pby5zdmMuY2x1c3Rl
ci5sb2NhbIILbWluaW8ubWluaW+CD21pbmlvLm1pbmlvLnN2Y4ICKi6CGSoubWlu
aW8uc3ZjLmNsdXN0ZXIubG9jYWwwCgYIKoZIzj0EAwIDSAAwRQIhAMnZzOBRyHLQ
vsYo3mhbF45SGv56y5DA6CqUT6/Jng2cAiB/skNx4xK1T5w2ViZD23LPx8ydzwOi
i9S8Yqvl0BzOIA==
-----END CERTIFICATE-----

TLS example: Provide custom CA to trust + trust LightningStream image’s embedded trusted

CA certs

backends:
- type: ls
access_key: MY_ACCESS_KEY
secret_key: MY_SECRET_KEY
bucket: mybucket
endpoint: https://my.s3.endpoint
tls:
add_system_ca_pool: true
ca: |
-----BEGIN CERTIFICATE-----
MIICdjCCAhygAwIBAgIQEuVhXI/nMis4pfWxPMvPbDAKBggqhkjOPQQDAjAjMSEw
HwYDVQQDDBhrM3Mtc2VydmVyLWNhQDE2NTI4NjE4NzEwHhcNMjIwNjAxMTIyNTEw
WhcNMjMwNjAxMTIyNTEwWjBWMRUwEwYDVQQKEwxzeXN0ZW06bm9kZXMxPTA7BgNV
BAMMNHN5c3RlbTpub2RlOioubWluaW90ZW5hbnQtaGwubWluaW8uc3ZjLmNsdXN0
ZXIubG9jYWwwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAAQnhNTJcv4z8l1mfBlV
+xCyQiyrhZFNFE4GtZ1SuhlRFJj2Ze+LK7ySRHt8DbS75r+eF+GpKGhfhjAA3HXB
KNFNo4H+MIH7MA4GA1UdDwEB/wQEAwIFoDATBgNVHSUEDDAKBggrBgEFBQcDATAM
BgNVHRMBAf8EAjAAMB8GA1UdIwQYMBaAFEpXmMnwHdQ748wFl7IwQbLLyl28MIGk
BgNVHREEgZwwgZmCO21pbmlvdGVuYW50LXBvb2wtMC0wLm1pbmlvdGVuYW50LWhs
Lm1pbmlvLnN2Yy5jbHVzdGVyLmxvY2Fsgh1taW5pby5taW5pby5zdmMuY2x1c3Rl
ci5sb2NhbIILbWluaW8ubWluaW+CD21pbmlvLm1pbmlvLnN2Y4ICKi6CGSoubWlu
aW8uc3ZjLmNsdXN0ZXIubG9jYWwwCgYIKoZIzj0EAwIDSAAwRQIhAMnZzOBRyHLQ
vsYo3mhbF45SGv56y5DA6CqUT6/Jng2cAiB/skNx4xK1T5w2ViZD23LPx8ydzwOi
i9S8Yqvl0BzOIA==
-----END CERTIFICATE-----

LightningStream - Health Configuration

Default health configuration settings are as follows:

health:
storage_list:
warn_duration: 30s
error_duration: 2m
interval: 1s

storage_load:
warn_duration: 30s
error_duration: 2m
interval: 1s

(continues on next page)

49

PowerDNS Cloud ControlReference

(continued from previous page)

storage_store:
warn_duration: 30s
error_duration: 2m
interval: 1s

start:
warn_duration: 30s
error_duration: 2m
interval: 1s

The 4 main sections each have their own purpose:

• storage_list: Thresholds for reporting errors/warnings regarding the ability to list snap-

shots in the S3 bucket

• storage_load: Thresholds for reporting errors/warnings regarding the ability to retrieve

snapshots from the S3 bucket

• storage_store: Thresholds for reporting errors/warnings regarding the ability to store

snapshots in the S3 buckets

• start: Thresholds for reporting errors/warnings regarding the initial sync performed when

LightningStream starts

Each section has the same 3 options:

• warn_duration: Duration after which a failing operation will report as being in warning
state

• error_duration: Duration after which a failing operation will report as being in error state
• interval: Interval between evalutation of the state of the operation

For example, a configuration as follows for load:
storage_load:
warn_duration: 30s
error_duration: 2m
interval: 1s

Would lead to the following health monitoring:

Every 1 second
If this operation has failed for more than 2 minutes, report error
Else
If this operation has failed for more than 30 seconds, report warning
Else do not report any warnings/errors for this operation

Overriding these defaults can be done as follows:

backends:
- type: ls
access_key: MY_ACCESS_KEY
secret_key: MY_SECRET_KEY
bucket: mybucket
endpoint: https://my.s3.endpoint
health:
storage_load:
warn_duration: 2m

(continues on next page)

50

PowerDNS Cloud ControlReference

(continued from previous page)

error_duration: 5m
interval: 5s

11.2 dnsdists

Configuration of dnsdist instances

Key: name (Name of the dnsdist instance)

11.2.1 Parameters

• aclAdd: Netmasks allowed to access dnsdist, in addition to the loopback, RFC1918 and

other local addresses. Overrules a AllowAll setting (if configured) on the global dnsdist

defaults.

• aclAllowAll: Allow all inbound traffic to dnsdist, regardless of source IP.

• affinity: Kubernetes pod affinity

• agentLogLevel: Agent log level, defaults to info. Available options: debug, info, warn, error
• agentLogFormat: Agent log format, defaults to text. Available options: text, json
• agentResources: Resources allocated to the ‘agent’ container

• antiAffinityPreset: Pod anti affinity preset (Accepted values: preferred or required)
• apiKey: API key used to access the /api endpoint, used to configure a static key (default:

generated and stored in a secret)

• apiKeySecret: Name of the secret from which to take the dnsdist API key, used when

there is a pre-provisioned secret holding the api key

• apiKeySecretItem: Name of the data item within apiKeySecret which holds the dnsdist
API key, used when there is a pre-provisioned secret holding the api key

• containerSecurityContext: Container security context for all containers within a Pod

(see ‘Security contexts’ chapter)

• do53Locals: Default amount of Do53 listen sockets per dnsdist pod (default: 1)
• do53TcpFastOpenQueueSize: Default size of the TCP Fast Open queue on Do53 listen

sockets (Dnsdist default)

• do53TcpListenQueueSize: Default size of the listen queue on Do53 listen sockets (Dns-

dist default)

• hostNetwork: Use host networking for dnsdist pods

• initResources: Resources allocated to the ‘dnsdist-init’ container

• luaScript: Lua script to be included in each dnsdist pod (See ‘Overview’ document for

usage examples)

• nodeSelector: Kubernetes pod nodeSelector

• podAnnotations: Annotations to be added to each Pod

51

PowerDNS Cloud ControlReference

• podLabels: Labels to be added to each Pod

• podSecurityContext: Kubernetes Pod security context (see ‘Security contexts’ chapter)

• replicas: Default number of replicas in a dnsdist deployment (default: 2)
• resources: Resources allocated to the ‘dnsdist’ container

• revisionHistoryLimit: Default 'revisionHistoryLimit' for dnsdist deployments (default: 0)
• rpcServerResources: Resources allocated to the ‘rpc-server’ container

• serverPurgeDelay: Delay (in seconds) after which replaced servers are purged from dns-

dist (default: 5)
• stateResources: Resources allocated to the ‘dnsdist-state’ container

• tolerations: Kubernetes Pod tolerations

• verbose: Be verbose (default: false)
• volumes: List of additional volumes (see Storage chapter)

11.2.2 Parameter Sets

• config (Dnsdist Configuration)

– addEDNSToSelfGeneratedResponses: Whether to add EDNS to self-generated re-

sponses, provided that the initial query had EDNS. (Dnsdist default)

– allowEmptyResponse: Set to true (defaults to false) to allow empty responses (qd-

count=0) with a NoError or NXDomain rcode (default) from backends. dnsdist drops

these responses by default because it can’t match them against the initial query since

they don’t contain the qname, qtype and qclass, and therefore the risk of collision is

much higher than with regular responses. (Dnsdist default)

– consistentHashingBalancingFactor: Maximum imbalance between the number of

outstanding queries intended for a given server, based on its weight, and the actual

number, when using the chashed consistent hashing load-balancing policy. Default

is 0, which disables the bounded-load algorithm. (Dnsdist default)

– payloadSizeOnSelfGeneratedAnswers: Set the UDP payload size advertised via

EDNS on self-generated responses. In accordance with RFC 6891, values lower than

512 will be treated as equal to 512. (Dnsdist default)

– roundRobinFailOnNoServer: By default the roundrobin load-balancing policy will

still try to select a backend even if all backends are currently down. Setting this to

true will make the policy fail and return that no server is available instead. (Dnsdist

default)

– servFailWhenNoServer: If set, return a ServFail when no servers are available, in-

stead of the default behaviour of dropping the query. (Dnsdist default)

– verboseHealthChecks: Set whether health check errors should be logged. This is

turned off by default. (Dnsdist default)

– weightedBalancingFactor: Maximum imbalance between the number of outstand-

ing queries intended for a given server, based on its weight, and the actual number,

when using the whashed or wrandom load-balancing policy. Default is 0, which dis-

ables the bounded-load algorithm. (Dnsdist default)

52

PowerDNS Cloud ControlReference

• ecs (dnsdist ECS functions)

– setECSOverride: Whether to override an existing EDNS Client Subnet option present

in the query (only effective when the backend server has annotation useClientSubnet

= true). (Dnsdist default)

– setECSSourcePrefixV4: Truncate the requestors IPv4 address to this length, in bits

(only effective when the backend server has annotation useClientSubnet = true).

(Dnsdist default)

– setECSSourcePrefixV6: Truncate the requestors IPv6 address to this length, in bits

(only effective when the backend server has annotation useClientSubnet = true).

(Dnsdist default)

• hpa (Horizontal Pod Autoscaler - see helm values ‘dnsdist.hpa’ for examples)

– enabled: Enable or disable the HPA (default: false)
– minReplicas: Minimum # of replicas (default: 2)
– maxReplicas: Maximum # of replicas (default: 4)
– metrics: Metric(s) upon which to make decisions regarding scaling. Must

be an array of MetricSpec (https://kubernetes.io/docs/reference/generated/
kubernetes-api/v1.22/#metricspec-v2beta2-autoscaling). Examples are in the
helm values.

– behavior: Behavior of the HPA, must be instance of HorizontalPodAutoscalerBe-

havior (https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.
22/#horizontalpodautoscalerspec-v2beta2-autoscaling).

• readiness (Readiness probe Configuration)

– bindInterface: Name of interface to which the readiness probe will bind

– disabled: Whether or not to instruct Kubernetes to poll the agent for readiness

state. (default: false)
– do53ProbeInterval: How often (in seconds) the agent will judge the health state of

dnsdist via tests against the Do53 listeners. (default: 2)
– do53QDomain: Domain used in the query to judge whether the Do53 listeners of a

dnsdist container are healthy and ready for traffic. (default: a.root-servers.net)
– do53QTimeout: Number of seconds after which the query used to judge whether

the Do53 listeners of a dnsdist container are healthy and ready for traffic time out.

(default: 1)
– do53QType: Type of query used to judge whether the Do53 listeners of a dnsdist

container are healthy and ready for traffic. (default: A)
– failureThreshold: When a probe fails, Kubernetes will try this many times before

marking the container as Unready. Updates deployment, resulting in respawn of

dnsdist pods (default: 2)
– initialDelaySeconds: Number of seconds after the containers have started before

readiness probes are initiated. Updates deployment, resulting in respawn of dnsdist

pods. (default: 5)
– periodSeconds: How often (in seconds) to perform the readiness probes. Updates

deployment, resulting in respawn of dnsdist pods (default: 2)
53

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#metricspec-v2beta2-autoscaling
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#metricspec-v2beta2-autoscaling
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#horizontalpodautoscalerspec-v2beta2-autoscaling
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#horizontalpodautoscalerspec-v2beta2-autoscaling

PowerDNS Cloud ControlReference

– stateProbeInterval: How often (in seconds) the agent will judge the health state of

the dnsdist agent. (default: 2)
– successThreshold: Minimum consecutive succesfull probes before a container is

marked Ready. Updates deployment, resulting in respawn of dnsdist pods (default:2)
– timeoutSeconds: Number of seconds after which the readiness probes time out.

Updates deployment, resulting in respawn of dnsdist pods (default: 1)
• recursor (Enable & configure recursor containers co-hosted within the dnsdist pod)

– backendsPerServer: Amount of server objects to create in dnsdist for each recursor

container (default: 1)
– pool: Name of the pool to which the co-hosted recursors should be added (default:default)
– replicas: Number of recursor containers which should be added to each dnsdist

pod. This must be set to >= 1 for any recursors to be added (default: 0)
– All options configurable on standalone Recursor instances can also be added here,

except for: affinity, antiAffinity, hostNetwork, nodeSelector & reivisionHistoryLimit

(as those are pod-specific and those are controlled by dnsdist for this pod)

• ringBuffers (Ringbuffer configuration)

– retries: Number of shards to attempt to lock without blocking before giving up and

simply blocking while waiting for the next shard to be available. Defaults to 5 if there

is more than 1 shard, else it defaults to 0. (Dnsdist default)

– shards: Number of shards to use to limit lock contention, defaults to 1. (Dnsdist

default)

– size: Maximum amount of queries to keep in the ringbuffer, defaults to 10000. (Dns-

dist default)

• securityPolling (Security polling configuration)

– securityPollInterval: Interval between security pollings, in seconds. Defaults to

3600. (Dnsdist default)

– securityPollSuffix: Domain name from which to query security update notifica-

tions. Setting this to an empty string disables secpoll. (Dnsdist default)

• service (Configuration of the Kubernetes service object Note: See the section ‘Exposing

dnsdist’ for more details and examples on how to configure this)

– sharedService: Whether or not to create a single service withmultiple ports (ie: UDP

& TCP). Default: true
– servicePerPort: Whtehr or not to create a service for each port (ie: a service for UDP

& a service for TCP). Default: false
– type: Type of service (One of NodePort, ClusterIP, LoadBalancer). Defaults to Clus-

terIP

– annotations: List of annotations to add to the Service

54

PowerDNS Cloud ControlReference

– loadBalancerIP: For a Service of type LoadBalancer, a loadbalancer IP can be re-

quested here. If left empty/undefined, this will be assigned by your LoadBalancer

provider

– ports: A dictionary of ports you want to have exposed via the Service

• tuning (dnsdist tuning functions)

– setCacheCleaningDelay: Interval in seconds between two runs of the cache clean-

ing algorithm, removing expired entries. (Dnsdist default)

– setCacheCleaningPercentage: Percentage of the cache that the cache cleaning al-

gorithm will try to free by removing expired entries. By default (100), all expired

entries are removed. (Dnsdist default)

– setMaxTCPClientThreads: Maximum amount of TCP client threads, handling TCP

connections. By default this value is 10, unless more than 10 TCP listen sockets have

been defined. (Dnsdist default)

– setMaxTCPConnectionDuration: Maximum duration of an incoming TCP connec-

tion, in seconds. 0 (the default) means unlimited. (Dnsdist default)

– setMaxTCPConnectionsPerClient: Maximum number of TCP connections per

client. 0 (the default) means unlimited. (Dnsdist default)

– setMaxTCPQueriesPerConnection: Maximum number of queries in an incoming

TCP connection. 0 (the default) means unlimited. (Dnsdist default)

– setMaxTCPQueuedConnections: Maximum number of TCP connections queued

(waiting to be picked up by a client thread), defaults to 1000. 0 means unlimited.

(Dnsdist default)

– setMaxUDPOutstanding: Maximum number of outstanding UDP queries to a given

backend server, defaults to 65535. (Dnsdist default)

– setStaleCacheEntriesTTL: TTL for expired cache entries to be eligible as answer

when no backends are available for a query, in seconds. (Dnsdist default)

– setTCPRecvTimeout: Read timeout on TCP connections from the client, in seconds.

(Dnsdist default)

– setTCPSendTimeout: Write timeout on TCP connections from the client, in seconds.

(Dnsdist default)

– setUDPTimeout: Maximum time dnsdist will wait for a response from a backend

over UDP, in seconds. Defaults to 2. (Dnsdist default)

11.2.3 Server Pools

pools (Configuration of pools)

Key: name (Name of the pool)

• ecs: Set to true if dnsdist should add EDNS Client Subnet information to the query before

looking up into the cache, when all servers from this pool are down. If at least one server

is up, the preference of the selected server is used, this parameter is only useful if all the

backends in this pool are down and have EDNS Client Subnet enabled, since the queries in

the cache will have been inserted with ECS information. Default is false. (Dnsdist default)

55

PowerDNS Cloud ControlReference

• serverGroups: List of [Name] of recursor & resolver instances whose endpoints will

be member of this pool (Dnsdist default)

• serverPolicy: Policy for dnsdist to use to select the server in this pool to send a query to.

Supported policies are 'leastOutstanding', 'firstAvailable', 'wrandom', 'whashed', 'chashed'

& 'roundrobin' (Dnsdist default)

• packetcache (Configurable cache that holds responses from prior requests served by the

pool)

– cookieHashing: Whether EDNS Cookie values will be hashed, resulting in separate

entries for different cookies in the packet cache. This is required if the backend is

sending answers with EDNS Cookies, otherwise a client might receive an answer with

the wrong cookie. (Dnsdist default)

– deferrableInsertLock: Whether the cache should give up insertion if the lock is held

by another thread, or simply wait to get the lock. (Dnsdist default)

– keepStaleData: Whether to suspend the removal of expired entries from the cache

when there is no backend available in at least one of the pools using this cache.

(Dnsdist default)

– maxEntries: Max (Dnsdist default)

– maxNegativeTTL: Cache a NXDomain or NoData answer from the backend for at

most this amount of seconds, even if the TTL of the SOA record is higher. (Dnsdist

default)

– maxTTL: Cap the TTL for records to his number. (Dnsdist default)

– minTTL: Do not cache entries with a TTL lower than this. (Dnsdist default)

– numberOfShards: Number of shards to divide the cache into, to reduce lock con-

tention. (Dnsdist default)

– parseECS: Whether any EDNS Client Subnet option present in the query should be

extracted and stored to be able to detect hash collisions involving queries with the

same qname, qtype and qclass but a different incoming ECS value. (Dnsdist default)

– staleTTL: When the backend servers are not reachable, and global configuration set-

StaleCacheEntriesTTL is set appropriately, TTL that will be used when a stale cache

entry is returned. (Dnsdist default)

– temporaryFailureTTL: On a SERVFAIL or REFUSED from the backend, cache for this

amount of seconds. (Dnsdist default)

11.2.4 DNS over HTTP(S)

doh (List of configurations of DoH listeners)

• name: Name of the DoH listener (used for naming the corresponding Service objects, etc)

• locals: Amount of listen sockets per dnsdist pod (default: 1)

• headers: Dictionary of HeaderName:HeaderValue pairs to add to each response (Omit-

ted on redirect responses)

56

PowerDNS Cloud ControlReference

• secrets: List of names of Secrets (Type: kubernetes.io/tls) containing certificates & keys to

be used on the DoH listener. Key must be in tls.key node and certificate (+ intermediates
if applicable) must be in tls.crt node.

• service: Configuration of the Kubernetes service object (Note: See the section ‘Exposing

dnsdist’ for more details and examples on how to configure this)

• stekSecret: Name of a Secret (Type: Opaque) with stek tickets included in the tickets node.
This secret is monitored for changes and will be updated in dnsdist whenever a change is

detected. Default: CloudControl will generate and update tickets as per the defaults (See

parameters named stek* in the dnsdist defaults section)

• urls: List of URLs to respond to (Default: /dns-query)

• config (Configuration options for the DoH listener)

– ciphers: The TLS ciphers to use, in OpenSSL format. Ciphers for TLS 1.3 must be

specified via ciphersTLS13.

– ciphersTLS13: The TLS ciphers to use for TLS 1.3, in OpenSSL format.

– enableRenegotiation: Whether secure TLS renegotiation should be enabled. De-

fault: false (Disabled by default since it increases the attack surface and is seldom

used for DNS)

– exactPathMatching: Whether to do exact path matching of the query path against

the paths configured in urls (true) or to accepts sub-paths (false). Default: true

– idleTimeout: Set the idle timeout, in seconds. (Default: 30)

– internalPipeBufferSize: Set the size in bytes of the internal buffer of the pipes used

internally to pass queries and responses between threads. Default: 1048576

– maxConcurrentTCPConnections: Maximum number of concurrent incoming TCP

connections. Default: 0 (which means unlimited).

– minTLSVersion: Minimum version of the TLS protocol to support. Possible values

are tls1.0 tls1.1, tls1.2 and tls1.3. Default is to require at least TLS 1.0.
– numberOfStoredSessions: The maximum number of sessions kept in memory at

the same time. Default is 20480. Setting this value to 0 disables stored session

entirely.

– preferServerCiphers: Whether to prefer the order of ciphers set by the server in-

stead of the one set by the client. Default is true, meaning that the order of the

server is used.

– releaseBuffers: Whether OpenSSL should release its I/O buffers when a connection

goes idle, saving roughly 35 kB of memory per connection. Default: true

– sendCacheControlHeaders: Whether to parse the response to find the lowest TTL

and set a HTTP Cache-Control header accordingly. Default is true.

– serverTokens: The content of the Server: HTTP header returned by dnsdist. Default:h2o/dnsdist
– sessionTimeout: Set the TLS session lifetime in seconds, this is used both for TLS

ticket lifetime and for sessions kept in memory.

– sessionTickets: Whether session resumption via session tickets is enabled. Default:

true (ie: tickets are enabled)

57

PowerDNS Cloud ControlReference

– tcpFastOpenQueueSize: Set the TCP Fast Open queue size, enabling TCP Fast Open

when available and the value is larger than 0.

– tcpListenQueueSize: Set the size of the listen queue.

– trustForwardedForHeader: Whether to parse any existing X-Forwarded-For header

in the HTTP query and use the right-most value as the client source address and port,

for ACL checks, rules, logging and so on. Default is false.

• responses (Responses to URLs in urls which should not be a DNS answer, but a custom
HTTP response)

– regex: Regular expression to match the path against

– status: HTTP code to answer with

– content: Content of the HTTP response (or a URL in case of a redirect - HTTP-3XX)

– headers: Dictionary of HeaderName:HeaderValue pairs to add to each response

(Omitted on redirect responses)

• certificates (List of certificates to be used on the DoH listener)

– cert: Certificate in PEM format, including intermediates if applicable

– key: Private key corresponding to the certificate

11.2.5 DNS over TLS

doh (List of configurations of DoT listeners)

• name: Name of the DoT listener (used for naming the corresponding Service objects, etc)

• locals: Amount of listen sockets per dnsdist pod (default: 1)

• secrets: List of names of Secrets (Type: kubernetes.io/tls) containing certificates & keys to

be used on the DoT listener. Key must be in tls.key node and certificate (+ intermediates
if applicable) must be in tls.crt node.

• service: Configuration of the Kubernetes service object (Note: See the section ‘Exposing

dnsdist’ for more details and examples on how to configure this)

• stekSecret: Name of a Secret (Type: Opaque) with stek tickets included in the tickets node.
This secret is monitored for changes and will be updated in dnsdist whenever a change is

detected. Default: CloudControl will generate and update tickets as per the defaults (See

parameters named stek* in the dnsdist defaults section)

• config (Configuration options for the DoT listener)

– ciphers: The TLS ciphers to use, in OpenSSL format. Ciphers for TLS 1.3 must be

specified via ciphersTLS13.

– ciphersTLS13: The TLS ciphers to use for TLS 1.3, in OpenSSL format.

– enableRenegotiation: Whether secure TLS renegotiation should be enabled. De-

fault: false (Disabled by default since it increases the attack surface and is seldom

used for DNS)

– maxConcurrentTCPConnections: Maximum number of concurrent incoming TCP

connections. Default: 0 (which means unlimited).

58

PowerDNS Cloud ControlReference

– maxInFlight: Maximum number of in-flight queries. The default is 0, which disables

out-of-order processing.

– minTLSVersion: Minimum version of the TLS protocol to support. Possible values

are tls1.0 tls1.1, tls1.2 and tls1.3. Default is to require at least TLS 1.0.
– numberOfStoredSessions: The maximum number of sessions kept in memory at

the same time. Default is 20480. Setting this value to 0 disables stored session

entirely.

– preferServerCiphers: Whether to prefer the order of ciphers set by the server in-

stead of the one set by the client. Default is true, meaning that the order of the

server is used.

– releaseBuffers: Whether OpenSSL should release its I/O buffers when a connection

goes idle, saving roughly 35 kB of memory per connection. Default: true

– sessionTimeout: Set the TLS session lifetime in seconds, this is used both for TLS

ticket lifetime and for sessions kept in memory.

– sessionTickets: Whether session resumption via session tickets is enabled. Default:

true (ie: tickets are enabled)

– tcpFastOpenQueueSize: Set the TCP Fast Open queue size, enabling TCP Fast Open

when available and the value is larger than 0.

– tcpListenQueueSize: Set the size of the listen queue.

• certificates (List of certificates to be used on the DoT listener)

– cert: Certificate in PEM format, including intermediates if applicable

– key: Private key corresponding to the certificate

11.3 recursors

Configuration of recursor instances

Key: name (Name of the recursor instance)

11.3.1 Parameters

• affinity: Kubernetes pod affinity

• agentLogLevel: Agent log level, defaults to info. Available options: debug, info, warn, error
• agentLogFormat: Agent log format, defaults to text. Available options: text, json
• agentResources: Resources allocated to the ‘recursor-agent’ container

• antiAffinityPreset: Pod anti affinity preset (Accepted values: preferred or required)
• apiKey: API key used to access the /api endpoint, used to configure a static key (default:

generated and stored in a secret)

• containerSecurityContext: Container security context for all containers within a Pod

(see ‘Security contexts’ chapter)

• hostNetwork: Use host networking for recursor pods

59

PowerDNS Cloud ControlReference

• inboundInterfaces: List of names of interfaces to which recursor will bind

• initResources: Resources allocated to the ‘recursor-init’ container

• luaConfig: Lua configuration to be included in each recursor pod (See ‘Overview’ docu-

ment for usage examples)

• luaScript: Lua script to be included in each recursor pod (See ‘Overview’ document for

usage examples)

• metricsInterfaces: List of names of interfaces to which the metrics aggregator will bind

• nodeSelector: Kubernetes pod nodeSelector

• outboundInterfaces: List of names of interfaces from which recursor will try to send

outbound traffic

• podAnnotations: Annotations to be added to each Pod

• podLabels: Labels to be added to each Pod

• podSecurityContext: Kubernetes Pod security context (see ‘Security contexts’ chapter)

• replicas: Default number of replicas in a recursor deployment (default: 2)
• resources: Resources allocated to the ‘recursor’ container

• revisionHistoryLimit: Default 'revisionHistoryLimit' for recursor deployments (default:0)
• tolerations: Kubernetes Pod tolerations

• volumes: List of additional volumes (see Storage chapter)

11.3.2 Parameter Sets

• dnsdist (Settings to be applied to each recursor instance when added to dnsdist as a

server)

– addXPF: Add the client's IP address and port to the query, along with the original

destination address and port. Default is disabled (0)

– checkClass: Number to use as QCLASS in the health-check query, default is

DNSClass.IN

– checkInterval: The time in seconds between health checks

– checkName: String to use as QNAME in the health-check query, default is "a.root-

servers.net."

– checkTimeout: The timeout (in milliseconds) of a health-check query, default to

1000 (1s)

– checkType: String to use as QTYPE in the health-check query, default is "A"

– disableZeroScope: Disable the EDNS Client Subnet 'zero scope' feature, which does

a cache lookup for an answer valid for all subnets (ECS scope of 0) before adding ECS

information to the query and doing the regular lookup. This requires the parseECS
option of the corresponding cache to be set to true

60

PowerDNS Cloud ControlReference

– healthCheckMode: Type of health-check to perform, default is auto which is con-
figured using the checkName, checkType, etc parameters. Alternatives are up (no
healthcheck - always available for traffic) and down (no healthcheck - never available
for traffic)

– maxCheckFailures: Allow this amount of check failures before declaring the back-

end down, default is 1

– mustResolve: Set to true when the health check MUST return a RCODE different

from NXDomain, ServFail and Refused. Default is false, meaning that every RCODE

except ServFail is considered valid

– order: The order of servers in this set, used by the leastOutstanding and firstAvailable
policies

– qps: Limit the number of queries per second to this amount, when using thefirstAvailable policy
– reconnectOnUp: Close and reopen the sockets when a server transits from Down

to Up. This helps when an interface is missing when dnsdist is started. Default is

false

– retries: The number of TCP connection attempts to servers in this set, for a given

query

– rise: Require NUM consecutive successful checks before declaring the backend up,

default is 1

– setCD: Set the CD (Checking Disabled) flag in the health-check query, default is false

– sockets: Number of sockets (and thus source ports) used toward the backend

server, defaults to 1

– source: Name of the interface which Dnsdist will use to try to send traffic to this

Recursor

– tcpConnectTimeout: The timeout (in seconds) of a TCP connection attempt

– tcpFastOpen: Whether to enable TCP Fast Open

– tcpRecvTimeout: The timeout (in seconds) of a TCP read attempt

– tcpSendTimeout: The timeout (in seconds) of a TCP write attempt

– useClientSubnet: Add the client's IP address in the EDNS Client Subnet option when

forwarding the query to this backend

– useProxyProtocol: Add a proxy protocol header to the query, passing along the

client's IP address and port along with the original destination address and port.

Default is false

– weight: The weight of servers in this set, used by thewrandom, whashed and chashed
policies, default is 1

• config (Recursor configuration, any configuration item listed in the recursor documenta-

tion (https://doc.powerdns.com/recursor/settings.html) can be referenced here. Set-
tings which are explicitly ignored due to conflicts with Cloud Control are filtered by 'web-

server*', 'local*', 'disable-syslog', 'daemon', 'cpu-map', 'chroot', 'socket*' and 'config*')

• hpa (Horizontal Pod Autoscaler - see helm values ‘recursor.hpa’ for examples)

61

https://doc.powerdns.com/recursor/settings.html

PowerDNS Cloud ControlReference

– enabled: Enable or disable the HPA (default: false)
– minReplicas: Minimum # of replicas (default: 2)
– maxReplicas: Maximum # of replicas (default: 4)
– metrics: Metric(s) upon which to make decisions regarding scaling. Must

be an array of MetricSpec (https://kubernetes.io/docs/reference/generated/
kubernetes-api/v1.22/#metricspec-v2beta2-autoscaling). Examples are in the
helm values.

– behavior: Behavior of the HPA, must be instance of HorizontalPodAutoscalerBe-

havior (https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.
22/#horizontalpodautoscalerspec-v2beta2-autoscaling).

• readiness (Readiness probe Configuration)

– bindInterfaces: List of names of interfaces to which the readiness probe will bind

11.3.3 Forward Zones

forward (List of sets of zones to be forwarded to Auth instances, Recursor instances or other

resolvers)

• exclude: If learnFrom is configured, exclude any zones which match this list of regular
expressions (this is processed after the include filter)

• include: If learnFrom is configured, include only zones which match this list of regular
expressions (this is processed before the exclude filter)

• learnFrom: Name of a set of Auth instances from which forward zones must be learned

(can be filtered using include and/or exclude)
• nta: Add a negative trust anchor for the forwarded zones (default: false)
• priority: Priority when the list of sets of forward zones has multiple entries containing

duplicate static and/or learned zones, lowest value for priority has precedence (default:100)
• recurse: Set the recursion desired (RD) bit to 1 for the forwarded zones (default: false)
• zones: List of zones to be forwarded (not affected by include and exclude)
• serverGroups: (List of server groups to forward to - Auth, Recursor or Resolver instances)

– group: Name of the group of instances

11.4 resolvers

Configuration of external resolvers

Key: name (Name of the resolver instance)

62

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#metricspec-v2beta2-autoscaling
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#metricspec-v2beta2-autoscaling
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#horizontalpodautoscalerspec-v2beta2-autoscaling
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#horizontalpodautoscalerspec-v2beta2-autoscaling

PowerDNS Cloud ControlReference

11.4.1 Parameters

• ips: List of IP addresses of resolver endpoints

• port: Port to send traffic to for resolver endpoints

11.4.2 Parameter Sets

• dnsdist (Settings to be applied to each resolver instance when added to dnsdist as a

server)

– addXPF: Add the client's IP address and port to the query, along with the original

destination address and port. Default is disabled (0)

– checkClass: Number to use as QCLASS in the health-check query, default is

DNSClass.IN

– checkInterval: The time in seconds between health checks

– checkName: String to use as QNAME in the health-check query, default is "a.root-

servers.net."

– checkTimeout: The timeout (in milliseconds) of a health-check query, default to

1000 (1s)

– checkType: String to use as QTYPE in the health-check query, default is "A"

– disableZeroScope: Disable the EDNS Client Subnet 'zero scope' feature, which does

a cache lookup for an answer valid for all subnets (ECS scope of 0) before adding ECS

information to the query and doing the regular lookup. This requires the parseECS
option of the corresponding cache to be set to true

– healthCheckMode: Type of health-check to perform, default is auto which is con-
figured using the checkName, checkType, etc parameters. Alternatives are up (no
healthcheck - always available for traffic) and down (no healthcheck - never available
for traffic)

– maxCheckFailures: Allow this amount of check failures before declaring the back-

end down, default is 1

– mustResolve: Set to true when the health check MUST return a RCODE different

from NXDomain, ServFail and Refused. Default is false, meaning that every RCODE

except ServFail is considered valid

– order: The order of servers in this set, used by the leastOutstanding and firstAvailable
policies

– qps: Limit the number of queries per second to this amount, when using thefirstAvailable policy
– reconnectOnUp: Close and reopen the sockets when a server transits from Down

to Up. This helps when an interface is missing when dnsdist is started. Default is

false

– retries: The number of TCP connection attempts to servers in this set, for a given

query

– rise: Require NUM consecutive successful checks before declaring the backend up,

default is 1

63

PowerDNS Cloud ControlReference

– setCD: Set the CD (Checking Disabled) flag in the health-check query, default is false

– sockets: Number of sockets (and thus source ports) used toward the backend

server, defaults to 1

– source: Name of the interface which Dnsdist will use to try to send traffic to this

external resolver

– tcpConnectTimeout: The timeout (in seconds) of a TCP connection attempt

– tcpFastOpen: Whether to enable TCP Fast Open

– tcpRecvTimeout: The timeout (in seconds) of a TCP read attempt

– tcpSendTimeout: The timeout (in seconds) of a TCP write attempt

– useClientSubnet: Add the client's IP address in the EDNS Client Subnet option when

forwarding the query to this backend

– useProxyProtocol: Add a proxy protocol header to the query, passing along the

client's IP address and port along with the original destination address and port.

Default is false

– weight: The weight of servers in this set, used by thewrandom, whashed and chashed
policies, default is 1

11.5 rulesets

Rulesets allow for the configuration of dnsdist Packet Policies. For a detailed example of how

to use these rulesets, please refer to the Getting Started chapter in the Overview guide.
A basic ruleset looks as follows:

rulesets:
tcp-refusal-ruleset:
group: block-traffic
type: DNSDistRule
priority: 100
rules:
- name: Refuse TCP
combinator: AND
selectors:
- TCP: true
- QName: "tcptrue.example.com"

action:
RCode:
rcode: "REFUSED"

Where ‘tcp-refusal-ruleset’ is the name of the ruleset, which will be used to create a uniquely

named object. Under this name, the ruleset is defined, using the following values:

• group: The value of this parameter can be referenced in a dnsdist configuration to apply

the rules from this ruleset to that instance

• type: Type of ruleset, currently limited to ‘DNSDistRule’

• priority: Priority of this ruleset. If multiple are assigned to a dnsdist instance, it will

process the rule with the lowest ‘priority’ value first.

64

PowerDNS Cloud ControlReference

• rules: An array of rules to be applied to this ruleset (see below for more details on rules)

11.5.1 Rules

Rules are configurable via 4 different parameters:

• name: Name of the rule

• combinator: One of ‘AND’, ‘OR’ or ‘NOT’

• selectors: List of filters on which to apply the logic of the combinator

• action: Action to apply to the traffic selected by the above selectors

As a result, a single rule will look as follows:

name: Refuse TCP
combinator: AND
selectors:
- TCP: true
- QName: "tcptrue.example.com"

action:
RCode:
rcode: "REFUSED"

11.5.2 Combinators

The available combinators function as follows:

• AND: If all selectors match, the action will be applied

• OR: If any of the selectors match, the action will be applied

• NOT: If the selector does not match, the action will be applied (Only 1 selector is allowed

when using a NOT combinator)

11.5.3 Selectors

The following selectors are available:

11.5.3.1 TCP

Format:

TCP: true

If ‘true’, this will select queries received over TCP. If ‘false’ it will select non-TCP traffic (ie: UDP)

65

PowerDNS Cloud ControlReference

11.5.3.2 MaxQPS

Format:

MaxQPS:
qps: 50

Matches traffic not exceeding this qps limit. If e.g. this is set to 50, starting at the 51st query of

the current second traffic stops being matched. This can be used to enforce a global QPS limit.

11.5.3.3 MaxQPSIP

Format:

MaxQPSIP:
qps: 20
v4Mask: 32
v6Mask: 64
burst: 20
expiration: 300
cleanupDelay: 60
scanFraction: 10

Explanation of each parameter:

• qps (int) – The number of queries per second allowed, above this number traffic is

matched

• v4Mask (int) – The IPv4 netmask to match on. Default is 32 (the whole address)

• v6Mask (int) – The IPv6 netmask to match on. Default is 64

• burst (int) – The number of burstable queries per second allowed. Default is same as qps

• expiration (int) – How long to keep netmask or IP addresses after they have last been

seen, in seconds. Default is 300

• cleanupDelay (int) – The number of seconds between two cleanups. Default is 60

• scanFraction (int) – The maximum fraction of the store to scan for expired entries, for

example 5 would scan at most 20% of it. Default is 10 so 10%

Since most of the parameters have defaults, you can define a basic MaxQPSIP selector as fol-

lows:

MaxQPSIP:
qps: 20

66

PowerDNS Cloud ControlReference

11.5.3.4 NetmaskGroup

Format:

NetmaskGroup:
nmg:
- "192.0.2.0/28"
- "2001:db8:1234::/64"
src: true
quiet: false

Explanation of each parameter:

• nmg (NetMaskGroup) – The NetMaskGroups to match on

• src (bool) – Whether to match source or destination address of the packet. Defaults to

true (matches source)

• quiet (bool) – Do not display the list of matched netmasks in Rules. Default is false.

Since most of the parameters have defaults, you can define a basic NetmaskGroup selector as

follows:

NetmaskGroup:
nmg:
- "192.0.2.0/28"
- "2001:db8:1234::/64"

11.5.3.5 Opcode

Format:

Opcode: "Notify"

This selector matches queries with the specified opcode exactly. An example usecase for this

selector is to route zone update notification queries to secondary Auth instances, ie:

name: authnotify
combinator: AND
selectors:
- Opcode: "Notify"

action:
Pool:
poolname: "auth"

11.5.3.6 QName

Format:

QName: "host.example.com"

This selector matches queries with the specified qname exactly.

67

PowerDNS Cloud ControlReference

11.5.3.7 QType

Format:

QType: "SOA"

This selector matches queries with the specified qtype exactly. An example usecase for this

selector is to route zone transfer related queries to Auth instances, ie:

name: authxfr
combinator: OR
selectors:
- QType: "SOA"
- QType: "AXFR"
- QType: "IXFR"

action:
Pool:
poolname: "auth"

11.5.4 Actions

The following actions are available:

11.5.4.1 Allow

Format:

Allow: true

Let these packets go through.

11.5.4.2 Drop

Format:

Drop: true

Drop the packet.

11.5.4.3 Pool

Format:

Pool:
poolname: "name-of-a-pool"

The Pool action will send the packet into the specified pool

68

PowerDNS Cloud ControlReference

11.5.4.4 QPS

Format:

QPS:
maxqps: 10

Drop a packet if it does exceed the maxqps queries per second limits.

11.5.4.5 RCode

Format:

RCode:
rcode: "REFUSED"

The RCode action will answer any selector queries with the rcode specified.

11.5.4.6 TC

Format:

TC: true

Create answer to query with the TC bit set, and the RA bit set to the value of RD in the query, to

force the client to TCP.

11.6 zonecontrols

Configuration of zonecontrol instances

Key: name (Name of the zonecontrol instance)

11.6.1 Parameters

• affinity: Kubernetes pod affinity

• antiAffinityPreset: Pod anti affinity preset (Accepted values: preferred or required)
• containerSecurityContext: Container security context for all containers within a Pod

(see ‘Security contexts’ chapter)

• hostNetwork: Use host networking for zonecontrol pods

• ingress: Ingress object to expose the zonecontrol endpoint via an ingress managed by an

ingress controller (For formatting example, see the Exposing auth API chapter)
• initResources: Resources allocated to the ‘zc-init’ container

• nodeSelector: Kubernetes pod nodeSelector

• podSecurityContext: Kubernetes Pod security context (see ‘Security contexts’ chapter)

69

PowerDNS Cloud ControlReference

• postgres: Postgres database configuration (See: Postgres Database chapter below for de-
tails)

• replicas: Default number of replicas in a auth deployment (default: 2)
• resources: Resources allocated to the ‘zonecontrol’ container

• service: Service object to expose the zonecontrol endpoint (For formatting example, see

the Exposing dnsdist chapter, which covers the service format to add ClusterIP, NodePort
or LoadBalancer services)

• tolerations: Kubernetes Pod tolerations

11.6.2 Parameter Sets

• authEndpoints (Configuration of authoritative DNS server API endpoints)

– name: Name of the endpoint (If there aremultiple endpoints, the name of endpoints

must be unique)

– url: URL of the API endpoint (Including protocol, port)

– key: API key to authenticate against the endpoint

11.6.3 Postgres Database

ZoneControl requires a Postgres database to run. You can either specifiy the details of an ex-

isting database or have the bundled Postgres Operator create one. Both options are described

in further detail below.

11.6.3.1 Postgres (pre-existing)

If you have an existing Postgres database available, you can configure a zonecontrol instance

to utilize it. Configuring a pre-existing Postgres database can be done via the following config-

uration:

Format:

postgres:
host: host-of-postgres-cluster
dbname: auth
user: some_user
password: some_user_password

Available parameters:

• host - Host of the Postgres cluster/service

• port - Port over which to access the Postgres database (Optional, default: 5432)
• dbname - Name of the database

• user - User with which to connect

• password - Password for user

70

PowerDNS Cloud ControlReference

• sslmode - Postgres sslmode to use while connecting (Optional, omitted if no value is pro-
vided)

11.6.3.2 Postgres (Operator-managed)

If you have deployed the postgres-operator chart to your Kubernetes cluster, you can config-

ure a zonecontrol instance to use a operator-managed Postgres database. Configuring such a

Postgres database can be done via the following configuration:

Format:

postgres:
operator: true

Available parameters:

• operator - Must be set to true
The Postgres database which is created utilizes the default values which are exposed via the

helm values in zonecontrol.postgres.

71

PowerDNS Cloud ControlReference

12 Prometheus

This section allows you to configure 2 forms of Prometheus scraping configurations:

• Via PodMonitor objects (if a Prometheus Operator) is available

• Via Prometheus scraping annotations on Pods

By default, all Pods will have the following annotations present for Prometheus scraping:

• prometheus.io/path = the path where the metrics endpoint serves metrics (default: /met-rics)
• prometheus.io/port = the port to which the metrics endpoint listens (default: 8082)
• prometheus.io/scheme = the scheme for serving metrics (default: http)
• prometheus.io/scrape = whether or not to scrape this endpoint (default: true)

To disable this default behavior, you can set the value prometheus.annotations to false (default:true)
If you have a Prometheus Operator available or if you deployed the stack including theMonitor-ing Operators chart, you can set the value prometheus.operator.available to true (default: false).
As a result PodMonitor objects will be created for each dnsdist & recursor instance, with all the

necessary scraping details automatically included. These pods should then all be discovered

automatically by the Prometheus Operator.

72

	Overview
	Private Registries
	Example - Using a local registry with inline credentials
	Example - Using a local registry with a pre-provisioned image pull secret

	Cluster networking
	IPv4 only (default)
	IPv6 only
	Dualstack - IPv4 primary
	Dualstack - IPv6 primary

	Resources
	Kubernetes: Resource requests & limits
	Cloud Control defaults
	Resource tuning: DNSdist
	Resource tuning: Recursor
	Resource tuning: Auth
	Lightning Stream with large data sets

	Exposing dnsdist
	Example: Exposing via NodePort
	Example: Exposing via LoadBalancer
	Example: Exposing via LoadBalancer with mixed protocols
	Example: Separate LoadBalancers for IPv4 & IPv6 in a dualstack cluster

	Exposing auth API
	NGINX Example: HTTP
	NGINX Example: HTTPS with cert-manager
	NGINX Example: HTTP with stickiness using cookies
	NGINX Example: HTTP with stickiness using upstream-hash-by

	Labels & Annotations
	Labeling services with multiple ports
	Precedence of labeling & annotating

	Security contexts
	Configuring a global Pod security context
	Configuring a Pod security context for a specific set of instances
	Precedence of podSecurityContext
	Configuring a global Container security context
	Configuring a Container security context for a specific set of instances
	Precedence of containerSecurityContext

	Storage
	Defaults
	Global
	Instance Set

	Default configuration
	auth
	dnsdist
	recursor
	resolver
	zoneControl

	Instances
	auths
	Parameters
	Parameter Sets
	Backends
	Postgres (pre-existing)
	Postgres (Operator-managed)
	MySQL
	GeoIP
	GeoIP - MaxMind Database
	GeoIP - MaxMind Database - HTTP
	GeoIP - MaxMind Database - OCI
	GeoIP - Custom Database
	LightningStream

	dnsdists
	Parameters
	Parameter Sets
	Server Pools
	DNS over HTTP(S)
	DNS over TLS

	recursors
	Parameters
	Parameter Sets
	Forward Zones

	resolvers
	Parameters
	Parameter Sets

	rulesets
	Rules
	Combinators
	Selectors
	TCP
	MaxQPS
	MaxQPSIP
	NetmaskGroup
	Opcode
	QName
	QType

	Actions
	Allow
	Drop
	Pool
	QPS
	RCode
	TC

	zonecontrols
	Parameters
	Parameter Sets
	Postgres Database
	Postgres (pre-existing)
	Postgres (Operator-managed)

	Prometheus

