
Dovecot Migration Framework Scheduler Technical
Documentation for

1.1.0

2021-09-27

Copyright notice

©2021 by OX Software GmbH. All rights reserved. Open-Xchange and the Open-Xchange logo are
trademarks or registered trademarks of OX Software GmbH. All other company and/or product
names may be trademarks or registered trademarks of their owners. Information contained in this
document is subject to change without notice.

Release Notes for 1.1.0

Contents

1 General Information 2
1.1 Warnings . 2
1.2 Delivery Comment . 2
1.3 Install Package Repository . 2
1.4 Build Dependencies . 2

2 Overview 2
2.1 Migration Phases . 2

2.1.1 Pre-Sync . 2
2.1.2 Cutover . 3

2.2 Migration Components . 3
2.2.1 The Source . 3
2.2.2 The Target . 3
2.2.3 The Database . 3
2.2.4 The Scheduler . 3
2.2.5 The Workers . 3

2.3 Communication . 4
2.4 Flow . 4

2.4.1 Submitting the Migration . 4

3 Operations Guide 5
3.1 Requirements . 5

3.1.1 Database . 5
3.1.2 Java . 5

3.2 Packages . 5
3.2.1 1.0.0 . 5

3.3 Components . 5
3.3.1 Migration Database . 5
3.3.2 DMF Scheduler . 6
3.3.3 DMF Worker . 6

3.4 Logging . 6
3.4.1 Via Configuration . 7
3.4.2 Via HTTP . 7

3.5 Monitoring . 7
3.5.1 Prometheus . 7
3.5.2 Grafana . 8

3.6 Running a Migration . 8
3.6.1 1. Create a Source . 8

3.6.1.1 Example Source . 8
3.6.2 2. Create a Sourcehost . 8

3.6.2.1 Example Sourcehost . 9
3.6.3 3. Create a Target . 9

3.6.3.1 Example Target . 9
3.6.4 4. Submit a Migration . 10

3.6.4.1 Example Submit . 10
3.6.5 5. Review the Migration . 10

3.6.5.1 Example Review . 10
3.6.5.2 Example Response . 10

3.6.5.2.1 Review the Command . 11
3.6.5.2.2 Review the Log . 11

3.6.6 Handling Lost Users . 13
3.6.6.1 Worker Crashes . 13
3.6.6.2 Worker Cannot Update . 13

3.6.7 Migration Production Test . 13

4 Scheduler Install 14
4.1 Install the Package . 14

1

Release Notes for 1.1.0

4.2 Configure the Application . 14
4.2.1 Configure HTTPS . 14
4.2.2 Configure Authentication . 15

4.2.2.1 API Links . 15
4.2.2.2 Endpoints . 15
4.2.2.3 Security . 16

4.2.3 Configure Data Source . 16
4.3 Manage the Application . 16

5 Command Guide 16
5.1 Structure . 17

5.1.1 Name . 17
5.1.2 Success Code . 17
5.1.3 Flags . 17
5.1.4 Options . 17
5.1.5 Arguments . 17
5.1.6 Sub Command . 17

5.2 Format . 17
5.2.1 JSON . 17
5.2.2 YAML . 18

5.3 Property Injection . 18
5.3.1 Standard Properties . 18
5.3.2 Doveadm Properties . 19

5.4 Doveadm . 19
5.4.1 Passwords . 20
5.4.2 Options Format . 20

5.4.2.1 1. Using -o . 20
5.4.2.2 2. Not using -o . 20

5.4.3 Command Syntax . 21
5.4.4 Exclude Folders . 21

6 REST API 21
6.1 APIs . 21

6.1.1 Admin . 22
6.1.1.1 Sources . 22
6.1.1.2 Sourcehosts . 22
6.1.1.3 Targets . 22
6.1.1.4 Backends . 22

6.1.2 Customer/Migration . 22
6.1.3 Users . 23
6.1.4 Deprecated . 23

7 Migration Database 23
7.1 Table Descriptions . 23

7.1.1 Sources . 23
7.1.2 Sourcehosts . 24
7.1.3 Targets . 24
7.1.4 Backends . 24
7.1.5 Target UIDs . 24
7.1.6 Users . 24
7.1.7 Journal . 24

7.2 Entity Relationship Diagram . 24

8 Scheduler High Availability 25

9 Scheduler Health 25
9.1 Without Authentication . 25
9.2 With Authentication and Full Details . 25
9.3 Configuration . 26

2

Release Notes for 1.1.0

10 Scheduler Metrics 26
10.1 List of Metrics . 27
10.2 Query a Metric . 28
10.3 Prometheus Metrics API . 28

11 Shipped Packages and Version 28
11.1 Package open-xchange-dmf-scheduler . 28

11.1.1 Installation . 28
11.1.2 Configuration . 29

A Configuration Files 29

3

Release Notes for 1.1.0

1 General Information

1.1 Warnings

Warning
This preview delivery is not for productive usage and not affected by service-level agreements.

Warning
Images included in following pages have been attached as a generic visual reference for the theme
and should not be considered as the final aspect when installed on production environment. Actual
aspect will change based on components/plugins enabled and their configuration.

Warning
Custom configuration or template files are potentially not updated automatically. After the update,
please always check for files with a .dpkg-new or .rpmnew suffix andmerge the changesmanually.
Configuration file changes are listed in their own respective section below but don’t include changes
to template files. For details about all the configuration files and templates shipped as part of this
delivery, please read the relevant section of each package.

1.2 Delivery Comment

This delivery was requested with following comment:

DMF Scheduler 1.1.0 Preview Delivery 1

1.3 Install Package Repository

This delivery is part of a restricted preview software repository:

https://software.open-xchange.com/components/dmf-scheduler/preview/1.1.0/RHEL7
https://software.open-xchange.com/components/dmf-scheduler/preview/1.1.0/DebianStretch
https://software.open-xchange.com/components/dmf-scheduler/preview/1.1.0/DebianBuster

1.4 Build Dependencies

This delivery was build with following dependencies:

RedHat:RHEL-7,Debian:Stretch,Debian:Buster

2 Overview

The Dovecot Migration Framework (DMF for short and henceforth referred to as) consists of mul-
tiple components that are installed and operate in various parts of the overall architecture of a
migration from one Source IMAP installation to a Target Dovecot installation.

2.1 Migration Phases

While DMF leaves the operations of the migration phases up to the operator, it still defines two
phases.

2.1.1 Pre-Sync

The purpose of the “pre-sync” (aka sync) phase of the migration is to copy over as much data as
possible without locking users out of the Source system in order to minimize the time it will require
to perform the “cutover” phase.

4

https://software.open-xchange.com/components/dmf-scheduler/preview/1.1.0/RHEL7
https://software.open-xchange.com/components/dmf-scheduler/preview/1.1.0/DebianStretch
https://software.open-xchange.com/components/dmf-scheduler/preview/1.1.0/DebianBuster

Release Notes for 1.1.0

2.1.2 Cutover

The purpose of the “cutover” phase of the migration is to copy all data from the Source system to
the Target while the user is locked out of the Source. It is important to note that DMF does not
explicitly lock users on the Source, but can be configured to do so by defining pre/post/failure sync
commands.

In summary, within DMF, there is not a strict difference between pre-sync and cutover. However,
it provides the ability to separate the different phases to allow for executing specific operations
during each phase.

2.2 Migration Components

2.2.1 The Source

The Source system is an IMAP installation that is running productively, either within the same data
center or remotely. The Source IMAP server does not have to be Dovecot.

2.2.2 The Target

The Target system is a Dovecot installation that run the production environment in which the users
from the Source are migrated into.

2.2.3 The Database

The Migration Database holds all DMF migration component data, and user migration data.

2.2.4 The Scheduler

The Scheduler runs in the target environment and is a server that provides APIs to

• schedulemigrations duringwhich data is being synced from the Source to the Target (by work-
ers).

• query information about ongoing and finished migrations.
• manage Workers.

There may be multiple instances of the Scheduler for failover purposes. It is a standalone Java
process that does not require any particular framework, and available through the package open-
xchange-dmf-scheduler or Docker images.

2.2.5 The Workers

The Workers run in the target environment on Dovecot backends. Each Dovecot backend can have
one DMF Worker. It is a standalone Java process that does not require any particular framework,
and available through the package open-xchange-dmf-worker. They take care of the actual migra-
tion by processing migration jobs found in the Migration Database.

5

Release Notes for 1.1.0

Figure 1: components

2.3 Communication

With a standard DMF deployment, there are at least three forms of communication:

• HTTPS between the DMF Client and DMF Scheduler
• JDBC between:

– The DMF Scheduler and Migration Database
– The DMF Worker and Migration Database

• IMAP between the Target Dovecot and Source IMAP Server

Some features of DMF may utilize additional forms of communication. For instance, using the
doveadm protocol between the Target Dovecot and Source Dovecot server, or HTTP communica-
tion between the Target Dovecot node and Target Director node. Those kinds of communication
information are specified in the documentation for each designated feature.

Figure 2: communication

2.4 Flow

2.4.1 Submitting the Migration

An operator submits a migration using the authenticated REST API directly, e.g.

1 curl -X 'POST' \
2 'https://dmf-scheduler:8443/dmf/api/v2/users/migrations' \
3 -H 'accept: application/json' \
4 -H 'X-API-KEY: b270b24a-711d-47ee-8bdc-f59ad5c1abf2' \
5 -H 'Content-Type: application/json' \
6 -d '{"sourceUid": "user1",
7 "targetUid": "user1",

6

Release Notes for 1.1.0

8 "phase": "PRE_SYNC",
9 "priority": true,

10 "target": "default",
11 "sourcehost": "source-1",
12 "sourceport": 143
13 }'

Referencing the below UML:

• The Operator submits a new migration to the Scheduler using the REST API
• The Scheduler creates a new migration job based on the data submitted and stores it in the
database “queue”

• Meanwhile, the Worker is polling the database for new jobs. It finds the newly created job
• The Worker processes the migration job
• The Worker updates the job’s status in the database during and after the migration

Figure 3: flow

3 Operations Guide

This guide provides the necessary information to deploy a DMF platform and run a migration. It
does not provide the technical details of how DMF works, and you must read DMF Overview as a
prerequisite to this.

3.1 Requirements

3.1.1 Database

The DMF Migration Database supports any recent version of MariaDB Server.

3.1.2 Java

The Worker and Scheduler require JRE 8.

3.2 Packages

3.2.1 1.0.0

Package Component Supported Distribution
open-xchange-dmf-scheduler Scheduler RHEL7, DebianBuster, DebianStretch
open-xchange-dmf-worker Worker RHEL7, DebianBuster, DebianStretch

3.3 Components

3.3.1 Migration Database

TheMigration database is aMariaDBdatabase used by both the Scheduler andWorker and requires
read/write access to a database called migration.

For example:

7

Release Notes for 1.1.0

1 CREATE USER 'scheduler'@'192.168.1.167' IDENTIFIED BY 'secret';
2 GRANT ALL PRIVILEGES ON migration.* TO 'scheduler'@'192.168.1.167' IDENTIFIED BY 'secret';
3 CREATE USER 'worker'@'192.168.1.167' IDENTIFIED BY 'secret';
4 GRANT ALL PRIVILEGES ON migration.* TO 'worker'@'192.168.1.167' IDENTIFIED BY 'secret';

By defaultBy default, the Scheduler is configured to create the database when it does not already
exist. The Scheduler also manages the database using Liquibase.

3.3.2 DMF Scheduler

See the DMF Scheduler Install documentation.

3.3.3 DMF Worker

See the DMF Worker Install documentation.

3.4 Logging

Both the Scheduler and Worker use the Micronaut logging integration which is Logback.

The default configuration for the Scheduler is:

1 <configuration>
2 <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
3 <withJansi>true</withJansi>
4 <!-- encoders are assigned the type
5 ch.qos.logback.classic.encoder.PatternLayoutEncoder by default -->
6 <encoder>
7 <pattern>%cyan(%d{HH:mm:ss.SSS}) %gray([%thread]) %highlight(%-5level) %

magenta(%logger{36}) - %msg%n</pattern>
8 </encoder>
9 </appender>

10 <root level="info">
11 <appender-ref ref="STDOUT" />
12 </root>
13 </configuration>

The default configuration for the Worker is:

1 <configuration>
2 <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
3 <withJansi>true</withJansi>
4 <!-- encoders are assigned the type
5 ch.qos.logback.classic.encoder.PatternLayoutEncoder by default -->
6 <encoder>
7 <pattern>%cyan(%d{HH:mm:ss.SSS}) %gray([%thread]) %highlight(%-5level) %

magenta(%logger{36}) - %yellow(%mdc{job}) %msg%n</pattern>
8 </encoder>
9 </appender>

10 <root level="info">
11 <appender-ref ref="STDOUT"/>
12 </root>
13 </configuration>

Notice that there is Mapped Diagnostic Context (MDC) called “job” which will produce a value of
[JobID: <jobid>] for all logging produced during a migration job.

All DMF loggers start with dmf.worker.

There are two ways that the log level can be customized:

8

Release Notes for 1.1.0

3.4.1 Via Configuration

Micronaut documentation. This option will persist the log level as long as the property is set.

Add loggers with their desired log level under the “logger.levels” property.

Example:

application.yml

1 logger:
2 levels:
3 dmf: DEBUG

3.4.2 Via HTTP

Micronaut documentation. This option will persist only as long as the application is running.

Use GET to get the information about all loggers or a specific logger. Authorization is based on the
configured basic auth.

1 curl -u admin:password https://scheduler:8443/loggers/dmf

Sample output:

1 {"configuredLevel":"NOT_SPECIFIED","effectiveLevel":"INFO"}

Finally, update the log level using POST:

1 curl -u admin:password -X POST -H "Content-Type: application/json" -d '{ "configuredLevel
": "DEBUG" }' https://scheduler:8443/loggers/dmf

3.5 Monitoring

3.5.1 Prometheus

The Scheduler and Worker both make use of the Micronaut Micrometer integration to export met-
rics for consumption by Prometheus.

See the individual component’s Metrics sections for more details about what metrics each pro-
vide.

There are a lot of very useful metrics that can be gathered and shared with Grafana (or simi-
lar).

Prometheus can be configured like so:

prometheus.yml

1 global:
2 scrape_interval: 15s
3 evaluation_interval: 15s
4 rule_files:
5 scrape_configs:
6 - job_name: 'prometheus'
7 static_configs:
8 - targets: ['127.0.0.1:9090']
9 - job_name: 'scheduler'

10 metrics_path: '/prometheus'
11 scrape_interval: 5s
12 basic_auth:
13 username: admin
14 password: password

9

https://docs.micronaut.io/latest/guide/index.html#_controlling_log_levels_with_properties
https://docs.micronaut.io/latest/guide/index.html#loggersEndpoint

Release Notes for 1.1.0

15 static_configs:
16 - targets: ['scheduler:8443']
17 - job_name: 'worker'
18 metrics_path: '/prometheus'
19 scrape_interval: 5s
20 basic_auth:
21 username: admin
22 password: password
23 static_configs:
24 - targets: ['worker:8443']

3.5.2 Grafana

It is up to you how you would like to utilize Grafana, however, future releases will provide additional
metrics that will be helpful when monitoring progress of a migration.

3.6 Running a Migration

After installing all components, the following can be done to run amigration. See the DMF REST API
section of the documentation for information on how to use the API.

3.6.1 1. Create a Source

• The name can be any identifier that represents the Source platform you are migrating from. It
must match the regex [a-zA-Z0-9_]+.

• The apiKey will be used by you or your customer to submit and review migrations.

3.6.1.1 Example Source

1 curl -X 'POST' \
2 'https://scheduler:8443/dmf/admin/api/v2/sources' \
3 -H 'accept: application/json' \
4 -H 'Authorization: Basic YWRtaW46cGFzc3dvcmQ=' \
5 -H 'Content-Type: application/json' \
6 -d '{
7 "name": "CustomerX",
8 "apiKey": "b270b24a-711d-47ee-8bdc-f59ad5c1abf2"
9 }'

3.6.2 2. Create a Sourcehost

• The sourceName should be the name of the Source you just created.
• The Sourcehost name should be the host name of one of the IMAP servers that users of this
Source will be migrated from.

• The maxConnections should be the maximum number of concurrent migrations that this host
will support.

• For the following “Command” arguments, see the DMF Command Guide to learn how to con-
struct them:

– The migrationCommand1 should be the migration command that will be executed during
the pre-sync migration phase. If it is configured in the Worker, then simply specify a
random command name (ex: ignore) and no other command components.

– The migrationCommand2 should be the migration command that will be executed during
the cutover migration phase. If it is the same command that is executed for pre-sync, or
it is configured in the Worker, then leave this empty.

– The statusCommand should be the command thatwill be executedwhen collectingmailbox
count and size from the user’s source mailbox. If it will not be used, it is configured in the
Worker, or the default should be used, then leave this empty.

10

Release Notes for 1.1.0

3.6.2.1 Example Sourcehost

1 curl -X 'POST' \
2 'https://scheduler:8443/dmf/admin/api/v2/sources/CustomerX/sourcehosts' \
3 -H 'accept: application/json' \
4 -H 'Authorization: Basic YWRtaW46cGFzc3dvcmQ=' \
5 -H 'Content-Type: application/json' \
6 -d '{
7 "name": "imap.host.1",
8 "maxConnections": 200,
9 "migrationCommand1": {

10 "name": "doveadm",
11 "options": [
12 {
13 "name": "imapc_user",
14 "value": "%{mdb:ruid}"
15 },
16 {
17 "name": "imapc_password",
18 "value": "%{conf:imapc_master_password}"
19 },
20 {
21 "name": "imapc_host",
22 "value": "imap.host.1"
23 }
24],
25 "subCommand": {
26 "name": "backup",
27 "flags": [
28 "-R"
29],
30 "options": [
31 {
32 "name": "-u",
33 "value": "%{mdb:uid}"
34 }
35],
36 "arguments": [
37 "imapc:"
38]
39 }
40 }
41 }'

3.6.3 3. Create a Target

If you have already started a DMFWorker, then there is no need to do this. The first Worker to start
for a particular Target will define the Target in DMF based on their config value:

• dmf.worker.identity.target

Otherwise, you should name the Target based on the value that you will configure in the Workers
for that Target. If your client/customer is still using the now deprecated API, then it is required to
use a Target named “default”.

3.6.3.1 Example Target

1 curl -X 'POST' \
2 'https://scheduler:8443/dmf/admin/api/v2/targets' \
3 -H 'accept: application/json' \
4 -H 'Authorization: Basic YWRtaW46cGFzc3dvcmQ=' \
5 -H 'Content-Type: application/json' \
6 -d '{
7 "name": "default"
8 }'

11

Release Notes for 1.1.0

3.6.4 4. Submit a Migration

• It is possible to first “create” a DMF User record without submitting a migration. However, if
you add a new migration for a user who does not exist in DMF, then a DMF User record will
be implicitly created.

• This is where the API Key we set during the “Create a Source” step comes into play. Use it in
the X-API-KEY header to authenticate with the API. This will also tell the API which Source to
submit this migration in.

• The sourceUid should be the user’s mail identifier on the Source system.
• The targetUid should be the user’s new mail identifier on the Target system.
• The target should be the name of the Target we just created.
• The sourcehost should be the name of the Sourcehost we just created.
• The next time you submit a migration for this user, you will only need to specify the sourceUid
and phase.

3.6.4.1 Example Submit

1 curl -X 'POST' \
2 'https://scheduler:8443/dmf/api/v2/users/migrations' \
3 -H 'accept: application/json' \
4 -H 'X-API-KEY: b270b24a-711d-47ee-8bdc-f59ad5c1abf2' \
5 -H 'Content-Type: application/json' \
6 -d '{
7 "sourceUid": "source_user1",
8 "phase": "PRE_SYNC",
9 "priority": true,

10 "targetUid": "target_user1",
11 "target": "default",
12 "sourcehost": "imap.host.1"
13 }'

3.6.5 5. Review the Migration

At any point, you can get the details of the latest migration record for any user you have submitted
a migration for.

3.6.5.1 Example Review

1 curl -X 'GET' \
2 'https://localhost:7443/dmf/api/v2/users/source_user1/migrations/latest' \
3 -H 'accept: application/json' \
4 -H 'X-API-KEY: b270b24a-711d-47ee-8bdc-f59ad5c1abf2'

3.6.5.2 Example Response

1 {
2 "id": 1,
3 "sourceUid": "user1",
4 "created": "2021-04-16T12:50:08.99Z",
5 "status": "SYNC",
6 "phase": "PRE_SYNC",
7 "priority": false,
8 "started": "2021-04-16T12:50:09.00Z",
9 "backend": "default/dmf-worker",

10 "modified": "2021-04-16T12:50:10.16Z"
11 }

Notice the status of the record says SYNC. This means that the migration is still ongoing. We get a
lot of information about the migration already though. We know when we submitted (created) it,
which Worker is processing it, when the Worker started processing it, and the last time the Worker
updated the record.

12

Release Notes for 1.1.0

When themigration has finally completed (status SUCCESS, FAILED, ABORTED), if we pull themigration
record again, we might see:

1 {
2 "id": 1,
3 "sourceUid": "source_user1",
4 "created": "2021-04-16T12:50:08.99Z",
5 "status": "FAILURE",
6 "phase": "PRE_SYNC",
7 "priority": false,
8 "started": "2021-04-16T12:50:09.00Z",
9 "stopped": "2021-04-16T12:51:20.51Z",

10 "details": [
11 {
12 "count local mailbox pre sync": {
13 "success": true,
14 "command": "/usr/bin/doveadm -f tab mailbox status -u target_user1 \"messages

vsize\" INBOX/* INBOX *",
15 "exitCode": 0
16 }
17 },
18 {
19 "dsync": {
20 "command": "/usr/bin/doveadm -o imapc_user=source_user1 -o imapc_host=imap.host.1

-o imapc_password=<hidden> backup -R -u target_user1 imapc:",
21 "exitCode": 75,
22 "success": false,
23 "attempts": 5,
24 "errors": [
25 "Dsync failed with return code 75 after 5 attempts. Reason: Temporary failure.

Hint: Re-running the migration at a later time will usually resolve this",
26 "dsync(target_user1): Error: Failed to initialize user: imapc: Login to imap.

host.1 failed: Authentication failed: [AUTHENTICATIONFAILED] Authentication
failed."

27]
28 }
29 }
30],
31 "backend": "default/dmf-worker",
32 "modified": "2021-04-16T12:51:20.58Z",
33 "expungedMessageCount": 0,
34 "syncMessageCount": 0,
35 "syncSpeed": 69958
36 }

This time we found that the migration FAILED. There is another JSON key this time called details
which provides details about what operations were done during the migration. That JSON blob
lists the operation blocks in order. We can see that the count local mailbox pre sync operation
succeeded and what command was executed. However, themain sync command dsync failed after
5 attempts (our configuration says to retry up to 5 times with 15s sleep in between failures with
error code 75 - hence the 69s syncSpeed).

Finally, the errors block gives a hint about what went wrong as well as the last error message from
the doveadm logging. This error is self explanatory, we used a user that does not exist on our Source-
host imap.host.1. However, if we did not know what the issue was there are several ways we can
debug it.

3.6.5.2.1 Review the Command The migration details metadata gives us the command (minus
password) that was constructed and executed by the Worker. With this, we could inspect it for
errors, or manually run the command and review the output.

3.6.5.2.2 Review the Log If the command logging is enabled. Example:

1 dmf:
2 worker:

13

Release Notes for 1.1.0

3 command:
4 logging:
5 type: file
6 file:
7 format: "%(source)-%(user)-user-migration.log"
8 location: /app

Then we can review the logging of themigration command in the file: /app/CustomerX-target_uid-
user-migration.log.

Afterwehave reviewed the issue and found that the source user does not exist, we can try submiting
a new migration with a real user and find a better migration result:

1 {
2 "id": 3,
3 "sourceUid": "3@234",
4 "created": "2021-04-16T13:10:40.03Z",
5 "status": "SUCCESS",
6 "phase": "PRE_SYNC",
7 "priority": true,
8 "started": "2021-04-16T13:10:42.00Z",
9 "stopped": "2021-04-16T13:10:44.20Z",

10 "details": [
11 {
12 "count local mailbox pre sync": {
13 "success": true,
14 "command": "/usr/bin/doveadm -f tab mailbox status -u 3@600 \"messages vsize\"

INBOX/* INBOX *",
15 "exitCode": 0
16 }
17 },
18 {
19 "dsync": {
20 "command": "/usr/bin/doveadm -o imapc_user=3@234 -o imapc_host=imap.host.1 -o

imapc_password=<hidden> backup -R -u 3@600 imapc:",
21 "exitCode": 0,
22 "success": true,
23 "attempts": 1,
24 "saved": {
25 "INBOX": 150
26 }
27 }
28 },
29 {
30 "count local mailbox post sync": {
31 "success": true,
32 "command": "/usr/bin/doveadm -f tab mailbox status -u 3@600 \"messages vsize\"

INBOX/* INBOX *",
33 "exitCode": 0
34 }
35 },
36 {
37 "count remote mailbox": {
38 "success": true,
39 "command": "/usr/bin/doveadm -f tab -o mail=imapc: -o imapc_user=3@234 -o

imapc_ssl=no -o imapc_host=imap.host.1 -o imapc_port=143 -o imapc_password=<
hidden> mailbox status -u 3@234 \"messages vsize\" INBOX/* INBOX *",

40 "exitCode": 0
41 }
42 }
43],
44 "backend": "default/dmf-worker",
45 "modified": "2021-04-16T13:10:44.21Z",
46 "targetMessageCount": 150,
47 "targetMailboxSize": 142255,
48 "sourceMessageCount": 150,
49 "sourceMailboxSize": 142255,
50 "expungedMessageCount": 0,
51 "syncMessageCount": 150,
52 "syncSpeed": 1244

14

Release Notes for 1.1.0

53 }

Now with a SUCCESS we get significantly more information back. Looking at the dsync block again,
this time it is success: true still with the same information as last time, except we also get a new
saved block which tells us which mailboxes and how many mails were saved during the sync. If
there were deleted mails then we would also see an expunged block.

There is also now several more operations that were executed that are listed after the dsync block.
Finally, we get summarized numbers for source and target message count and mailbox size, as
well as how many mails were added or removed during the sync. We also see that the sync took
only 1244ms to complete. This number is not the entire migration, but just the time to sync mail-
boxes.

3.6.6 Handling Lost Users

A lostuser is one that has beenpushed IN_PROGRESS, but never completes. There are two, hopefully
rare, reasons this may happen.

3.6.6.1 Worker Crashes If the Worker crashes while it is processing migration jobs, then it will
never know if themigrations it started ever completed. With that, the sourcehost connection is also
still reserved since the database never heard back from the Worker.

3.6.6.2 Worker Cannot Update The Worker will do its best to update the status of a migration
job, however, when things beyond its control such as database failure occur, it can only eventually
give up and log the incident: Failure to send job response

In both scenarios, a user migration will appear to be in progress, but in reality it has been lost. With
that, the sourcehost connection is also still reserved since the database never heard back from the
Worker.

To resolve this issue, you should first verify that the migration is not running on the Worker which
can be done by reviewing the processes on that server and verifying that there is a not a process
with the migration command containing that user’s source or target uid.

Once that has been verified, you can manually close the user record with the Scheduler REST
API:

1 curl -X 'PUT' \
2 'https://localhost:7443/dmf/api/v2/users/source_uid/migrations/close/latest/as/ABORTED'

\
3 -H 'accept: */*' \
4 -H 'X-API-KEY: b270b24a-711d-47ee-8bdc-f59ad5c1abf2' \
5 -H 'Content-Type: application/json'

This will close the migration as ABORTED and release the sourcehost connection.

In the future, we will provide resources to easily identify and verify the incident and in some cases
self-correct it.

3.6.7 Migration Production Test

By default, DMF does not make any changes to the Source system so it is safe to execute dry runs
as long as no configured command makes a change to the Source or proxy systems.

For instance, if you configure a pre cutover command to lock the Source user’s account, then this
command should be disabled while testing production customer data.

15

Release Notes for 1.1.0

4 Scheduler Install

The DMF Scheduler is a stateless micro service. As such, you can deploy any number of Schedulers
based on your needs.

Currently, the Scheduler is only used by the client/operator to submit and review migrations, and
manage the DMF components.

4.1 Install the Package

The Scheduler can be installed with package open-xchange-dmf-scheduler. You will find that the
package requires JRE8.

Example:

1 apt-get install open-xchange-dmf-scheduler

This package registers a systemd service script called dmf-scheduler.

You will find all related application files under /opt/open-xchange/dmf/scheduler and /opt/open-
xchange/sbin.

4.2 Configure the Application

Once installed, you can find the configuration file at: /opt/open-xchange/dmf/scheduler/etc/dmf-
scheduler.yml. All properties can also be set as environment variables.

For instance, http.admin.username would be HTTP_ADMIN_USERNAME, while it would be configured as
follows in dmf-scheduler.yml:

1 http:
2 admin:
3 username: admin

Environment variables have precedence over configuration file settings.

4.2.1 Configure HTTPS

Review the Micronaut HTTPS documentation and examples to configure TLS.

Use keys under micronaut.ssl to configure the server. The default configuration expects a private
key and the corresponding certificate in /opt/open-xchange/dmf/certs/keystore.p12

This file can be easily generated by running the following:

1 /opt/open-xchange/sbin/dmf-scheduler-gen-certs -d /opt/open-xchange/dmf/certs

The script dmf-scheduler-gen-certs is installed as part of the open-xchange-dmf-scheduler pack-
age. In addition to keystore.p12 for the Scheduler, the script also generates scheduler.p12 in the
same directory. This file contains the self-signed certificate, and can be used by clients to verify the
identity of the Scheduler.

For distributed setups, when there are multiple Scheduler nodes, the certificate should be gener-
ated only once, and then the generated files distributed to all corresponding nodes.

As a side-effect, the script also generates scheduler.pem, which is the same self-signed certificate
in a more popular format. It can be used by browsers and other clients, but is not necessary for
DMF operation.

If the Scheduler operates behind a web server or any other proxy which performs the actual TLS
termination, and also uses a self-signed certificate, then its certificate can be converted to the right

16

https://docs.micronaut.io/2.0.3/guide/index.html#https

Release Notes for 1.1.0

format manually, using Java’s keytool. See the last step in the dmf-scheduler-gen-certs script for
an example.

An example configuration:

1 micronaut:
2 ssl:
3 enabled: true
4 key-store:
5 path: file:/opt/open-xchange/dmf/certs/keystore.p12
6 type: PKCS12
7 password: verysecretpassword
8 port: 8443

4.2.2 Configure Authentication

Basic authentication is used to authenticate HTTP clients that use the Admin API. This can be con-
figured like so:

1 http:
2 admin:
3 username: admin
4 password: verysecretpassword

API documentation via redoc, rapidoc, and swagger UI’s are available:

4.2.2.1 API Links

1 https://<hostname>/rapidoc
2 https://<hostname>/redoc
3 https://<hostname>/swagger-ui

By default, they can be accessed anonymously, but you can restrict them via basic auth by changing
the access level of those paths:

1 micronaut:
2 security:
3 intercept-url-map:
4 - pattern: /swagger/**
5 access:
6 - isAuthenticated()
7 - pattern: /swagger-ui/**
8 access:
9 - isAuthenticated()

10 - pattern: /rapidoc/**
11 access:
12 - isAuthenticated()
13 - pattern: /redoc/**
14 access:
15 - isAuthenticated()

The API static resources can be removed by removing their references in the configuration under
the micronaut.router.static-resources configuration.

4.2.2.2 Endpoints All built-in Micronaut Endpoints, or custom endpoints, are restricted by de-
fault, but any can be configured to be accessed anonymously:

1 endpoints:
2 info:
3 sensitive: false

17

https://docs.micronaut.io/latest/guide/index.html#providedEndpoints

Release Notes for 1.1.0

4.2.2.3 Security Restricting access to HTTP resources is enabled using the property:

• micronaut.security.enabled

You can also restrict clients by IP by using the micronaut.security.ip-patterns property.

1 micronaut:
2 security:
3 enabled: true
4 ip-patterns:
5 - 127.0.0.1
6 - 192.168.1.*

4.2.3 Configure Data Source

The Scheduler must talk to the Migration Database and this is the only data source you need to
configure. Aside from basic connection properties, the data source is highly configurable using any
of the JDBC Hikari properties.

Info
If createDatabaseIfNotExist=true is not used in the JDBC URL, you must create a database name
migration before starting the Scheduler.

Info
The configured database user must have create and drop table permissions.

Example configuration:

1 datasources:
2 default:
3 url: jdbc:mysql://dmf-db:3306/migration?createDatabaseIfNotExist=true
4 username: scheduler
5 password: verysecretpassword
6 dialect: MYSQL
7 driverClassName: org.mariadb.jdbc.Driver

4.3 Manage the Application

The application can be started/stopped/restarted using the systemd script dmf-scheduler.

Start example:

1 systemctl start dmf-scheduler

Stop example:

1 systemctl stop dmf-scheduler

5 Command Guide

This guide lays out the structure of a command, aswell as how todefine commandswithinDMF.

DMF’s concept of a Command equates to that of a shell command. There are several placeswithinDMF
where shell commands can be executed, and this includes the main migration command.

Warning
DMF will not obfuscate passwords in commands that are recorded in logs or migration records
unless otherwise stated. For instance, with the doveadm commands. See the Doveadm Password
section.

18

https://micronaut-projects.github.io/micronaut-sql/latest/guide/configurationreference.html#io.micronaut.configuration.jdbc.hikari.DatasourceConfiguration

Release Notes for 1.1.0

5.1 Structure

The structure of a Command is pretty simple.

Shell commands can be summarized as:

• command [options] [arguments] [sub command]

Similarly, DMF commands can be summarized as:

• name [flags] [options] [arguments] [sub command]

While naming is somewhat different, they are actually the same structure.

5.1.1 Name

The command name is just that. For instance, when you use the doveadm command, the command
name is doveadm.

5.1.2 Success Code

The success code is the code that a command returns when it has completed successfully. In most
cases this is 0, but can be changed to any signed integer value.

5.1.3 Flags

Flags are command options that do not use a parameter. For instance, -l, -r, -t are all flags.

5.1.4 Options

Options take an option name and a value: name value

Typically, the option name begins with a hyphen. For instance, -M INBOX is an option.

5.1.5 Arguments

Arguments are single structure values. For instance, "messages size" is an argument.

5.1.6 Sub Command

The structure of a sub command is the structure of a command. For instance, in the command
doveadm mailbox status, the command doveadm has a subcommand mailbox which has a subcom-
mand status.

5.2 Format

5.2.1 JSON

The command doveadm -D -o imapc_user=user1 -o imapc_password=secret -o imapc_host=host
backup -R -u user1 imapc: can be structured as the following in JSON:

1 {
2 "name": "doveadm",
3 "successCode": 0,
4 "flags": [
5 "-D"
6],
7 "options": [
8 {
9 "name": "-o",

10 "value": "imapc_user=user1"
11 },
12 {

19

Release Notes for 1.1.0

13 "name": "-o",
14 "value": "imapc_password=secret"
15 },
16 {
17 "name": "-o",
18 "value": "imapc_host=host"
19 }
20],
21 "subCommand": {
22 "name": "backup",
23 "flags": [
24 "-R"
25],
26 "options": [
27 {
28 "name": "-u",
29 "value": "user2"
30 }
31],
32 "arguments": [
33 "imapc:"
34],
35 }
36 }

5.2.2 YAML

The command doveadm -D -o imapc_user=user1 -o imapc_password=secret -o imapc_host=host
backup -R -u user1 imapc: can be structured as the following in YAML:

1 name: doveadm
2 flags: -D
3 options:
4 - name: -o
5 value: imapc_user=user1
6 - name: -o
7 value: imapc_password=secret
8 - name: -o
9 value: imapc_host=host

10 sub-command:
11 name: backup
12 flags: -R
13 arguments: "imapc:"
14 options:
15 - name: -u
16 value: user2

5.3 Property Injection

During migration job processing, DMF provides the ability to inject pre defined values into your
commands.

5.3.1 Standard Properties

You can use the formatter %{mdb:X} where X is one of the following:

• uid: the user’s targetUid
• ruid: the user’s sourceUid
• sourcehost: the user’s Sourcehost
• 2chrruid: the first two characters of the user’s sourceUid
• container: see the DMF Doveadm Features documentation
• md5path: the uid converted to md5 hex then formed into <first2chars>/<next2chars>
• source: the user’s DMF Source
• sourcepasswd: the user’s source password
• imapcoptions: value of imapcOptions

20

Release Notes for 1.1.0

• email: the user’s email
• sourceport: the user’s sourcehost port
• imapc_ssl: the value of useImapcSsl
• exclude: the list of folders to exclude

For example:

1 {
2 "name": "echo",
3 "arguments": ["%{mdb:uid}"]
4 }

would result in a command echo user1 for a migration where the targetUid is user1.

5.3.2 Doveadm Properties

When using the doveadm Worker, you can use the formatter %{conf:Y} where Y is one of the fol-
lowing:

• imapc_host: the value of config property

dmf.doveadm.source.<source>.imapc.host

• imapc_master_password: the value of config property

dmf.doveadm.source.<source>.imapc.master-password

• imapc_master_user: the value of config property

dmf.doveadm.source.<source>.imapc.master-user

• imapc_prefix: the value of config property

dmf.doveadm.source.<source>.imapc.prefix

• imapc_port: the value of config property

dmf.doveadm.source.<source>.imapc.port

Additionally, you can define any other properties via the following config property to inject using the
formatter %{conf:Z}where Z is a key under property dmf.doveadm.source.<source>.command.inject

For instance, if you define:

1 dmf:
2 doveadm:
3 source:
4 default:
5 command:
6 inject:
7 mykey: myvalue

with the command:

1 {
2 "name": "echo",
3 "arguments": ["%{conf:myvalue}"]
4 }

then you will end up with the command: echo myvalue

You can also override any of the imapc or mdb properties by using the inject config strategy.

5.4 Doveadm

When the doveadm Worker is used, any time a doveadm command is specified, there are four
special features.

21

Release Notes for 1.1.0

5.4.1 Passwords

Commands in DMF could be logged or stored in the database at any point, thus it’s important to
understand how passwords in commands are stored to ensure that unencrypted passwords are
not leaked into places they should not be.

When you use any of the following keys within the migration or status commands as options, their
value will be replaced with “<hidden>” when logged or stored in the migration database:

• imapc_password
• imapc_master_password
• pop3c_password
• pop3c_master_password
• doveadm_password

For instance, if you use the following migration command:

1 {
2 "name": "doveadm",
3 "options": [
4 {
5 "name": "-o",
6 "value": "imapc_password=%{conf:imapc_master_password}"
7 }
8],
9 ...

10 }

then the command would be logged like: doveadm -o imapc_password=<hidden>

Warning
These passwords are only obfuscated when those keys are used as command options (not flags,
names, arguments).

Warning
Do not ever assume that other commands, such as the post sync command, will obfuscate pass-
words. All commands should first be tested with non sensitive passwords to ensure that they are
not leaked.

5.4.2 Options Format

There are two ways to specify setting overrides for the doveadm base command.

5.4.2.1 1. Using -o

1 "options": [
2 {
3 "name": "-o",
4 "value": "imapc_user=user1"
5 }
6]

• The doveadm Worker will take care to correctly format the setting overrides.

5.4.2.2 2. Not using -o

1 "options": [
2 {
3 "name": "imapc_user",
4 "value": "user1"
5 }
6]

22

Release Notes for 1.1.0

• Since the only other possible option is -f, the Worker is able to correctly format all other
options as setting overrides.

• This option for a doveadm command would result in: -o imapc_user=user1.

5.4.3 Command Syntax

The Worker will work to ensure that any doveadm command that you use is syntactically correct,
however, it does not know if it is semantically correct.

For instance, if your migration command is:

1 {
2 "name": "doveadm",
3 "arguments": "this shouldn't be here",
4 ...
5 }

then DMF will fail the migration because doveadm does not take any arguments, but if you were
to describe a doveadm command that uses options that don’t make sense together, then DMF will
not complain and that issue would be found at command execution time.

5.4.4 Exclude Folders

When defining a user in DMF, you have the option to provide a list of folders in a field called ex-
cludeFolders. When using the property injection formatter {mdb:exclude}, DMF will convert it to
the DoveAdmSync folder exclusion format.

For example, if you specify for a user:

1 {
2 "excludeFolders": ["INBOX", "INBOX2"]
3 }

with the following migration command:

1 {
2 ...
3 "subCommand": {
4 "name": "backup",
5 "arguments": ["{%mdb:exclude}"],
6 ...
7 }
8 }

then DMF will format the command like: doveadm ... backup ... -x INBOX -x INBOX2

6 REST API

The DMF REST API is self documented through a generated openapi yaml file. By default, this file is
exposed through the Scheduler application via three different apps:

• Swagger UI: https://worker:8443/swagger-ui
• Rapidoc: https://worker:8443/rapidoc
• Redoc: https://worker:8443/redoc

Both swagger-ui and rapidoc can be used to interact with the Scheduler API, while redoc just pro-
vides the API specification.

6.1 APIs

There are currently three different types of APIs.

23

Release Notes for 1.1.0

6.1.1 Admin

The purpose of the Admin API is to provide a single administrator the ability to manage the DMF
platform. This API uses a single pair of basic auth credentials.

The relationship of the resources that the Admin API exposes is represented by the following im-
age:

Figure 4: adminapi

6.1.1.1 Sources Sources are the Source platforms that youmigrate from. When creating a Source,
you specify an apiKey that will be used for the Customer/Migration API.

6.1.1.2 Sourcehosts Sourcehosts are the mail servers of a Source that you migrate from. When
adding a Sourcehost, you will specify the following:

• maxConnection: themax number ofmigration connections available. Thismeans thatWorkers
who can migrate users from this Sourcehost will never concurrently migrate more users than
this.

• migrationCommand1: this command is executed during the pre-sync phase, or during the cu-
tover phase if migrationCommand2 is not provided. See the DMF Command Guide on how to
format the command.

• migrationCommand2: this command is executed during the cutover phase if specified.
• statusCommand: this command is executed when DMF counts the user’s Source mailbox size
and messages. When using the doveadm Worker this would be the doveadm mailbox status
command. It is optional and DMF will create the command based on configuration if config-
ured to do so.

All “commands” can also be specified in the Worker configuration instead.

6.1.1.3 Targets Targets are the Target platforms that you migrate into. The concept of a Tar-
get allows you to manage Workers of a target, as well as to enforce migration constrains across
Sources.

6.1.1.4 Backends Backend is synonymous for Worker. This API allows you to review the status
of Workers, as well as update their properties.

You can start, pause, and stop a Worker from here, as well as change their initial state and max
threads.

6.1.2 Customer/Migration

TheMigration (aka Customer) API is the API used to define users within DMF and submitmigrations.
The reason for “customer” is because this API can be exposed to customers who can be provided
the API Key for their Source. This would allow your customer to control the migration schedule
while leaving the management of the platform to you.

The Migration API is about managing user migrations whose relationship with the other resources
can be represented by the following image:

24

Release Notes for 1.1.0

Figure 5: userapi

6.1.3 Users

A user is a record containing the properties of a user account from a Source which will be migrated
to a Target.

When creating a new user, there are a number of optional properties that can be specified and
injected into the migration or other commands.

It is optional to first create the user in DMF, and you can instead simply submit a migration using
the same properties. This will implicitly create a user record.

Once a user has been created, or a first migration has completed, you can submit a migration with
just the fields sourceUid and phase. Setting the priority field to true will force Workers to process
that migration before others in the queue without priority. This is useful when running cutovers
alongside pre-syncs, to ensure that new cutovers are processed before pre-syncs.

6.1.4 Deprecated

Most of the old DMF HTTP API has been included with this version of DMF to ensure backward
compatibility with clients, however, it will soon be removed in a future version.

7 Migration Database

The Migration Database is used by both the Scheduler and Worker to manage migration compo-
nents and migration jobs.

At first look, you may notice interesting relationships between tables. This is because of DMF’s
custom data sharding.

Whenever a newSource is created, the two tables users and journal are duplicated into usersSourceName
and journalSourceName. This is to reduce the amount of migration data between Sources and in-
troduce a small layer of data separation.

That means that the base users and journal tables will never have any data in them, and instead
the data will go into the source-based tables.

7.1 Table Descriptions

7.1.1 Sources

The sources tables holds DMF Sources.

25

Release Notes for 1.1.0

7.1.2 Sourcehosts

The sourcehosts table holds all Sourcehosts of a Source.

7.1.3 Targets

The targets table holds all DMF Targets.

7.1.4 Backends

The backends table holds all Worker state data.

7.1.5 Target UIDs

The target_uids table is used to enforce Target mail uid uniqueness across Sources. Since each
Source has their own user data tables, it’s not possible to enforce a unique target uid without
this.

7.1.6 Users

The users table is used to hold all static user data. This table is constructed for every Source using
table name usersSourceName.

7.1.7 Journal

The journal table is used to hold all migration records of a user. This table is constructed for every
Source using table name journalSourceName.

7.2 Entity Relationship Diagram

Figure 6: db-erd

26

Release Notes for 1.1.0

8 Scheduler High Availability

The DMF Scheduler is the component that serves the following purposes:

• provides an API to manage Sources, Sourcehosts, Targets, Backends(Workers)
• provides an API to schedule new migrations
• provides an API to fetch information about ongoing and finished migrations
• creates and manages the migration database

As such, it is a critical component of the migration process which should be running at all times or
at least with little downtime.

When the Scheduler is not running:

• it is not possible to submit migrations
• it is not possible to query information about the migration

This would be an issue for automtated client that use DMF for submitting and monitoring progress
of migrations.

It does not, however, prevent previously submitted migrations from being processed by Worker
nodes.

Operating multiple instances of the Scheduler in an Active/Active scenario is easy:

• the Scheduler only caches uncritical information, such as for metrics and health monitoring,
everything else being persisted and fetched live from the Migration database

Furthermore, amonitoringHA load-balancer (e.g. ha-proxy)which performs active/passive proxying
of HTTP(S) traffic to the multiple Scheduler nodes would be helpful in order to provide stable URIs
for DMF clients.

Scheduler health checking can be set up over HTTP(S) even without authentication, by querying its
/health URL, as documented in DMF Scheduler Health. When doing so, one can also control which
health monitors should be included or disabled.

9 Scheduler Health

As part of the Micronaut framework, each Scheduler node monitors several components and re-
ports a health check, which is reachable under the path /health.

It’s possible to configure the endpoint to be reachable without authentication and provide a simple
status output, and then all other details when authenticated.

9.1 Without Authentication

1 curl https://scheduler:8443/health

Sample output:

1 {
2 "status" : "UP"
3 }

9.2 With Authentication and Full Details

1 curl -u admin:secret https://scheduler:8443/health

Sample output:

27

https://docs.micronaut.io/latest/guide/index.html#healthEndpoint

Release Notes for 1.1.0

1 {
2 "name": "api",
3 "status": "UP",
4 "details": {
5 "jdbc": {
6 "name": "api",
7 "status": "UP",
8 "details": {
9 "jdbc:mysql://dmf-db:3306/migration?createDatabaseIfNotExist=true": {

10 "name": "api",
11 "status": "UP",
12 "details": {
13 "database": "MariaDB",
14 "version": "10.5.4-MariaDB-1:10.5.4+maria~focal"
15 }
16 }
17 }
18 },
19 "compositeDiscoveryClient()": {
20 "name": "api",
21 "status": "UP",
22 "details": {
23 "services": {}
24 }
25 },
26 "service": {
27 "name": "api",
28 "status": "UP",
29 "details": null
30 },
31 "diskSpace": {
32 "name": "api",
33 "status": "UP",
34 "details": {
35 "total": 126557421568,
36 "free": 71800705024,
37 "threshold": 10485760
38 }
39 }
40 }
41 }

9.3 Configuration

Individual health indicators can be turned off with configuration settings, which can be specified
throughmodifying the dmf-scheduler.yml configuration file or through environment variables.

Configuration Property
Indicator
Tree Description

endpoints.health.disk-
space.enabled

diskSpace Monitors the available disk space of a
configurable path and
threshold:endpoints.health.disk-space.path
(defaults to
“.”)endpoints.health.disk-space.threshold
(in bytes, defaults to 10 MB)

endpoints.health.jdbc.enabledjdbc Monitors databases.

10 Scheduler Metrics

Each Scheduler node exports a number of metrics, currently all being provided by the Micronaut
framework. Its metrics API provides JSON data and also offers a Prometheus API.

Note that authentication is required to query metrics and their values by default.

28

Release Notes for 1.1.0

To change that behavior and not require authentication, set the endpoints.metrics.sensitive con-
figuration property to false, either in the configuration file dmf-scheduler.yml or in as an environ-
ment variable.

The whole metrics API can also be disabled altogether by setting endpoints.metrics.enabled to
false.

10.1 List of Metrics

A list of metric names can be queried using

1 curl -u admin:secret https://scheduler:8443/metrics

Sample output:

1 {
2 "names": [
3 "executor",
4 "executor.active",
5 "executor.completed",
6 "executor.pool.core",
7 "executor.pool.max",
8 "executor.pool.size",
9 "executor.queue.remaining",

10 "executor.queued",
11 "hikaricp.connections",
12 "hikaricp.connections.acquire",
13 "hikaricp.connections.active",
14 "hikaricp.connections.creation",
15 "hikaricp.connections.idle",
16 "hikaricp.connections.max",
17 "hikaricp.connections.min",
18 "hikaricp.connections.pending",
19 "hikaricp.connections.timeout",
20 "hikaricp.connections.usage",
21 "http.server.requests",
22 "jvm.buffer.count",
23 "jvm.buffer.memory.used",
24 "jvm.buffer.total.capacity",
25 "jvm.classes.loaded",
26 "jvm.classes.unloaded",
27 "jvm.gc.live.data.size",
28 "jvm.gc.max.data.size",
29 "jvm.gc.memory.allocated",
30 "jvm.gc.memory.promoted",
31 "jvm.gc.pause",
32 "jvm.memory.committed",
33 "jvm.memory.max",
34 "jvm.memory.used",
35 "jvm.threads.daemon",
36 "jvm.threads.live",
37 "jvm.threads.peak",
38 "jvm.threads.states",
39 "logback.events",
40 "process.cpu.usage",
41 "process.files.max",
42 "process.files.open",
43 "process.start.time",
44 "process.uptime",
45 "system.cpu.count",
46 "system.cpu.usage",
47 "system.load.average.1m"
48]
49 }

29

Release Notes for 1.1.0

10.2 Query a Metric

Querying a specific metric can be achieved as follows:

1 curl -u admin:secret https://scheduler:8443/metrics/process.uptime

Sample output:

1 {
2 "name": "process.uptime",
3 "measurements": [
4 {
5 "statistic": "VALUE",
6 "value": 168503.498
7 }
8],
9 "availableTags": [],

10 "description": "The uptime of the Java virtual machine",
11 "baseUnit": null
12 }

10.3 Prometheus Metrics API

The values of allmetrics canbe fetched in Prometheus’ format using the /prometheus endoint:

1 curl -u admin:secret https://scheduler:8443/prometheus

A portion of the sample output:

1 # HELP hikaricp_connections_active Active connections
2 # TYPE hikaricp_connections_active gauge
3 hikaricp_connections_active{pool="HikariPool-1",} 0.0
4 # HELP jvm_buffer_memory_used_bytes An estimate of the memory that the Java virtual

machine is using for this buffer pool
5 # TYPE jvm_buffer_memory_used_bytes gauge
6 jvm_buffer_memory_used_bytes{id="direct",} 3.35544376E8
7 jvm_buffer_memory_used_bytes{id="mapped",} 0.0
8 # HELP jvm_buffer_total_capacity_bytes An estimate of the total capacity of the buffers in

this pool
9 # TYPE jvm_buffer_total_capacity_bytes gauge

10 jvm_buffer_total_capacity_bytes{id="direct",} 3.35544375E8
11 jvm_buffer_total_capacity_bytes{id="mapped",} 0.0

11 Shipped Packages and Version

11.1 Package open-xchange-dmf-scheduler

DMF Scheduler Dovecot Migration Framework Scheduler.
Version: 1.1.0-1
Type: Other

11.1.1 Installation

Install on nodes with package installer apt-get or yum:

<package installer> install open-xchange-dmf-scheduler

30

Release Notes for 1.1.0

11.1.2 Configuration

For details, please see appendix A
/opt/open-xchange/dmf/scheduler/etc/dmf-scheduler.yml (page 30)

A Configuration Files

File 1 /opt/open-xchange/dmf/scheduler/etc/dmf-scheduler.yml

1 # Required for legacy API which should have
2 # all keys in the json response
3 jackson:
4 serializationInclusion: ALWAYS
5 ---
6 http:
7 admin:
8 username:
9 password:

10 headers:
11 xapikey: X-API-KEY
12 ---
13 micronaut:
14 server:
15 # Upload multipart to disk instead of memory for large files
16 multipart:
17 disk: true
18 enabled: true
19 # SSL configuration
20 # Required for production environments.
21 # See https://docs.micronaut.io/latest/guide/index.html#https for details.
22 ssl:
23 enabled: true
24 key-store:
25 path: file:/opt/open-xchange/dmf/certs/keystore.p12
26 type: PKCS12
27 password:
28 port: 8443
29 router:
30 versioning:
31 enabled: true
32 default-version: v1
33 parameter:
34 enabled: false
35 names: 'v,api-version'
36 header:
37 enabled: true
38 names:
39 - 'X-API-VERSION'
40 - 'Accept-Version'
41 # Allows the openapi views to be seen
42 static-resources:
43 swagger:
44 paths: classpath:META-INF/swagger
45 mapping: /swagger/**
46 redoc:
47 paths: classpath:META-INF/swagger/views/redoc
48 mapping: /redoc/**
49 rapidoc:
50 paths: classpath:META-INF/swagger/views/rapidoc
51 mapping: /rapidoc/**
52 swagger-ui:
53 paths: classpath:META-INF/swagger/views/swagger-ui
54 mapping: /swagger-ui/**
55 security:
56 enabled: true
57 # Change the security of the open api views to anonymous so that they can be viewed

without credentials
58 intercept-url-map:

31

Release Notes for 1.1.0

59 - pattern: /swagger/**
60 access:
61 - isAnonymous()
62 - pattern: /swagger-ui/**
63 access:
64 - isAnonymous()
65 - pattern: /rapidoc/**
66 access:
67 - isAnonymous()
68 - pattern: /redoc/**
69 access:
70 - isAnonymous()
71 application:
72 name: api
73 metrics:
74 enabled: true
75 export:
76 prometheus:
77 enabled: true
78 step: PT1M
79 descriptions: true
80 ---
81 # This way of defining the datasource properties means that we can externalize the

configuration,
82 # for example for production environment, and also provide a default value for development

.
83 # If the environment variables are not defined Micronaut will use the default values. Also

keep in
84 # mind that it is necessary to escape the : in the connection url using back ticks `.
85 datasources:
86 default:
87 # url should use createDatabaseIfNotExist=true if the database will not
88 # already exist: https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-reference-

configuration-properties.html
89 url: jdbc:mysql://localhost:3306/migration?createDatabaseIfNotExist=true
90 username:
91 password:
92 dialect: MYSQL
93 driverClassName: org.mariadb.jdbc.Driver
94 ---
95 liquibase:
96 datasources:
97 default:
98 change-log: 'classpath:liquibase/scheduler/liquibase-changelog.xml'
99 ---

100 endpoints:
101 all:
102 enabled: true
103 sensitive: true
104 liquibase:
105 # fails with missing transition, might be fixed in later Micronaut releases
106 enabled: false

32

	General Information
	Warnings
	Delivery Comment
	Install Package Repository
	Build Dependencies

	Overview
	Migration Phases
	Pre-Sync
	Cutover

	Migration Components
	The Source
	The Target
	The Database
	The Scheduler
	The Workers

	Communication
	Flow
	Submitting the Migration

	Operations Guide
	Requirements
	Database
	Java

	Packages
	1.0.0

	Components
	Migration Database
	DMF Scheduler
	DMF Worker

	Logging
	Via Configuration
	Via HTTP

	Monitoring
	Prometheus
	Grafana

	Running a Migration
	1. Create a Source
	Example Source

	2. Create a Sourcehost
	Example Sourcehost

	3. Create a Target
	Example Target

	4. Submit a Migration
	Example Submit

	5. Review the Migration
	Example Review
	Example Response
	Review the Command
	Review the Log

	Handling Lost Users
	Worker Crashes
	Worker Cannot Update

	Migration Production Test

	Scheduler Install
	Install the Package
	Configure the Application
	Configure HTTPS
	Configure Authentication
	API Links
	Endpoints
	Security

	Configure Data Source

	Manage the Application

	Command Guide
	Structure
	Name
	Success Code
	Flags
	Options
	Arguments
	Sub Command

	Format
	JSON
	YAML

	Property Injection
	Standard Properties
	Doveadm Properties

	Doveadm
	Passwords
	Options Format
	1. Using -o
	2. Not using -o

	Command Syntax
	Exclude Folders

	REST API
	APIs
	Admin
	Sources
	Sourcehosts
	Targets
	Backends

	Customer/Migration
	Users
	Deprecated

	Migration Database
	Table Descriptions
	Sources
	Sourcehosts
	Targets
	Backends
	Target UIDs
	Users
	Journal

	Entity Relationship Diagram

	Scheduler High Availability
	Scheduler Health
	Without Authentication
	With Authentication and Full Details
	Configuration

	Scheduler Metrics
	List of Metrics
	Query a Metric
	Prometheus Metrics API

	Shipped Packages and Version
	Package open-xchange-dmf-scheduler
	Installation
	Configuration

	Configuration Files

