
Dovecot Migration Framework Worker Technical
Documentation for

1.0.0

2021-06-09

Copyright notice

©2021 by OX Software GmbH. All rights reserved. Open-Xchange and the Open-Xchange logo are
trademarks or registered trademarks of OX Software GmbH. All other company and/or product
names may be trademarks or registered trademarks of their owners. Information contained in this
document is subject to change without notice.

Release Notes for 1.0.0

Contents

1 General Information 2
1.1 Warnings . 2
1.2 Delivery Comment . 2
1.3 Install Package Repository . 2
1.4 Build Dependencies . 2

2 Worker Install 2
2.1 Install the Package . 2
2.2 Configure the Application . 3

2.2.1 Configure HTTPS . 3
2.2.2 Configure Authentication . 4

2.2.2.1 Endpoints . 4
2.2.2.2 Security . 4

2.2.3 Configure Data Source . 4
2.2.4 Configure Executor Pools . 4
2.2.5 Configure Identity . 5
2.2.6 Configure Sources . 6
2.2.7 Configure State . 6
2.2.8 Configure Job Settings . 6

2.2.8.1 Job Cache . 6
2.2.8.2 Max Jobs . 6

2.2.9 Configure Command Logging . 7
2.2.10 Configure Doveadm . 7

2.3 Manage the Application . 8
2.3.1 1. Pause the Worker . 8
2.3.2 2. Check and Confirm on no Running Jobs . 9
2.3.3 3. Stop the worker either using the Admin API or service. 9

3 Doveadm Features 9
3.1 Analyze Log . 10
3.2 Move Duplicates . 10
3.3 IMAPC Inbox . 10
3.4 Metacache . 11
3.5 Move User . 11
3.6 Fetch Container . 12
3.7 Parallel Writes Retry . 12
3.8 Mail Count . 12

3.8.1 Pre Mail Sync . 12
3.8.2 Mail Sync . 12
3.8.3 Post Mail Sync . 13
3.8.4 Post Mail Sync Remote . 13

3.8.4.1 IMAPC Protocol . 13
3.8.4.2 Doveadm Protocol . 13
3.8.4.3 Status Command . 14
3.8.4.4 Configuration . 14

3.9 Migration Retry . 14
3.9.1 Max Retries . 14
3.9.2 Retry Sleep . 15

3.10 Commands . 15
3.10.1 Property Injection . 15
3.10.2 Pre Mail Sync . 15
3.10.3 Mail Sync . 16
3.10.4 Post Mail Sync . 16
3.10.5 Mail Sync Failure . 16

3.11 Configurable Failures . 17
3.12 Order of Operations . 17
3.13 Job Response Details . 18

1

Release Notes for 1.0.0

4 Worker Health 19
4.1 Without Authentication . 19
4.2 With Authentication and Full Details . 20
4.3 Configuration . 20

5 Worker Metrics 21
5.1 List of Metrics . 21
5.2 Query a Metric . 22
5.3 Prometheus Metrics API . 22

6 Beyond Dovecot 22
6.1 Job Workers . 22

6.1.1 Doveadm . 23
6.1.2 Simulator . 23
6.1.3 Command . 23

6.2 Custom Migration . 23

7 Shipped Packages and Version 23
7.1 Package open-xchange-dmf-worker . 23

7.1.1 Installation . 23
7.1.2 Configuration . 24

A Configuration Files 24

2

Release Notes for 1.0.0

1 General Information

1.1 Warnings

Warning
This preview delivery is not for productive usage and not affected by service-level agreements.

Warning
Custom configuration or template files are potentially not updated automatically. After the update,
please always check for files with a .dpkg-new or .rpmnew suffix andmerge the changesmanually.
Configuration file changes are listed in their own respective section below but don’t include changes
to template files. For details about all the configuration files and templates shipped as part of this
delivery, please read the relevant section of each package.

1.2 Delivery Comment

This delivery was requested with following comment:

DMF Worker 1.0.0 Feature Delivery

1.3 Install Package Repository

This delivery is part of a restricted preview software repository:

https://software.open-xchange.com/components/dmf-worker/preview/1.0.0/RHEL7
https://software.open-xchange.com/components/dmf-worker/preview/1.0.0/DebianStretch
https://software.open-xchange.com/components/dmf-worker/preview/1.0.0/DebianBuster

1.4 Build Dependencies

This delivery was build with following dependencies:

RedHat:RHEL-7,Debian:Stretch,Debian:Buster

2 Worker Install

The DMF Worker is a stateful service which processes the migration jobs that are added to the
Migration Database queue by the DMF Scheduler. How it processes those jobs is configurable. This
guide will discuss the instation of the Worker as well as all configuration options.

2.1 Install the Package

The Worker can be installed with package open-xchange-dmf-worker. You will find that the package
requires JRE8.

Example:

1 apt-get install open-xchange-dmf-worker

This package registers a systemd service script called dmf-worker.

You will find all related application files under /opt/open-xchange/dmf/worker.

Where you install theWorker(s) is completely based upon how you plan to use it. While DMF stands
for Dovecot Migration Framework, in reality, it is more like a Mail Migration Framework because

3

https://software.open-xchange.com/components/dmf-worker/preview/1.0.0/RHEL7
https://software.open-xchange.com/components/dmf-worker/preview/1.0.0/DebianStretch
https://software.open-xchange.com/components/dmf-worker/preview/1.0.0/DebianBuster

Release Notes for 1.0.0

nothing restricts you from using it for just Dovecot migrations. In fact, bare bones, it is just a job
processing framework that allows you to plug in any Job Worker to process your job. However, this
guide will assume that you are using DMF for a Dovecot target migration. If you want to knowmore
about using it outside of Dovecot, see the DMF Beyond Dovecot documentation.

For this purpose, youwill install oneDMFWorker on everyDovecot backend that youplan tomigrate
users into. DMF must have execute permission on the Dovecot doveadm shell utility.

2.2 Configure the Application

Once installed, you can find the configuration file at: /opt/open-xchange/dmf/worker/etc/dmf-
worker.yml All properties can also be set as environment variables.

For instance, http.admin.usernamewould be HTTP_ADMIN_USERNAME, while it would be configured as
follows in dmf-worker.yml:

1 http:
2 admin:
3 username: admin

Environment variables have precedence over configuration file settings.

2.2.1 Configure HTTPS

The Worker does not expose a custom API, however, it exposes all built in Micronaut Endpoints as
well as a metrics endpoint for prometheus at https://worker:8443/prometheus.

Review the Micronaut HTTPS documentation and examples to configure TLS.

Use keys under micronaut.ssl to configure the server. The default configuration expects a private
key and the corresponding certificate in /opt/open-xchange/dmf/certs/keystore.p12

This file can be easily generated by running the following:

1 /opt/open-xchange/sbin/dmf-worker-gen-certs -d /opt/open-xchange/dmf/certs

The script dmf-worker-gen-certs is installed as part of the open-xchange-dmf-worker package. In
addition to keystore.p12 for theWorker, the script also generates worker.p12 in the samedirectory.
This file contains the self-signed certificate, and can be used by clients to verify the identity of the
Worker.

As a side-effect, the script also generates worker.pem, which is the same self-signed certificate in a
more popular format. It can be used by browsers and other clients, but is not necessary for DMF
operation.

If the Worker operates behind a web server or any other proxy which performs the actual TLS
termination, and also uses a self-signed certificate, then its certificate can be converted to the right
format manually, using Java’s keytool. See the last step in the dmf-worker-gen-certs script for an
example.

An example configuration:

1 micronaut:
2 ssl:
3 enabled: true
4 key-store:
5 path: file:/opt/open-xchange/dmf/certs/keystore.p12
6 type: PKCS12
7 password: verysecretpassword
8 port: 8443

4

https://docs.micronaut.io/latest/guide/index.html#providedEndpoints
https://docs.micronaut.io/2.0.3/guide/index.html#https

Release Notes for 1.0.0

2.2.2 Configure Authentication

Basic authentication is used to authenticate HTTP clients. This can be configured like so:

1 http:
2 admin:
3 username: admin
4 password: verysecretpassword

2.2.2.1 Endpoints All built-in Micronaut Endpoints, or custom endpoints, are restricted by de-
fault, but any can be configured to be accessed anonymously:

1 endpoints:
2 info:
3 sensitive: false

2.2.2.2 Security Restricting access to HTTP resources is enabled using the property:

• micronaut.security.enabled

You can also restrict clients by IP by using the micronaut.security.ip-patterns property.

1 micronaut:
2 security:
3 enabled: true
4 ip-patterns:
5 - 127.0.0.1
6 - 192.168.1.*

2.2.3 Configure Data Source

The Worker must talk to the Migration Database and this is the only data source you need to con-
figure. Aside from basic connection properties, the data source is highly configurable using any of
the JDBC Hikari properties.

Info
The configured database user must have read and update permissions on the migration database
tables.

Example configuration:

1 datasources:
2 default:
3 url: jdbc:mysql://dmf-db:3306/migration
4 username: worker
5 password: verysecretpassword
6 dialect: MYSQL
7 driverClassName: org.mariadb.jdbc.Driver

2.2.4 Configure Executor Pools

The DMF Worker makes use of Java executor pools to run migration jobs in parallel. You can find
all configuration properties for these pools at Micronaut Thread Pools.

In the Worker configuration, there are two pools that you should consider configuring. The impor-
tant thing is the number-of-threads. The default is 100. If you plan to allow the Worker to runmore
than 100 jobs in parallel, then you should adjust this number. For instance, if you plan to allow your
Workers to process 400 jobs in parallel, then you should set this value to at least 400 for both the
worker-executor and command-executor executor pools.

5

https://docs.micronaut.io/latest/guide/index.html#providedEndpoints
https://micronaut-projects.github.io/micronaut-sql/latest/guide/configurationreference.html#io.micronaut.configuration.jdbc.hikari.DatasourceConfiguration
https://docs.micronaut.io/latest/guide/index.html#threadPools

Release Notes for 1.0.0

1 micronaut:
2 executors:
3 worker-executor:
4 name: worker-executor
5 type: fixed
6 number-of-threads: 400
7 command-executor:
8 name: command-executor
9 type: fixed

10 number-of-threads: 400

Info
The executor pool max threads is not the property that the Worker uses to determine the max
number of jobs it will try to process in parallel. It is only a way to configure compute resources for
the DMF application. This means that you should set these values to the max number of jobs that
you will ever configure the Worker to process in parallel. It is not possible to change this number
while the application is running. However, you can inform the Worker to attempt to process more
or less jobs during runtime by using the Scheduler backends REST API and modifing the Worker’s
max threads.

2.2.5 Configure Identity

EachWorker has an identity so that you can identitfy themwhenmanaging their settings, but also so
that you can trace where a migration job was processed. There are two parts to a Worker identity:
target and memberid.

The Worker target should represent the Target platform. For instance, if you have a platform called
“cloud”, you might name the Target “cloud” and then set this as the target property of every Worker
that will migrate users to this platform. It is important to use the same Target name for all Workers
in the same platform to prevent multiple Workers frommigrating to the same target mailbox at the
same time. Therefore, ensuring a 1-1 relationship between user and target mailbox.

Warning
If your customer/client is still using the deprecated legacy API, then you must use a single Target
called “default”. This will require you to deploy a separate DMF platform for other Targets, so they
should update to the new API ASAP.

The Worker’s memberid must be unique within the Target. No Worker should ever have the same
memeberid as another Worker who has the same target identity.

Warning
There is not a mechanism in place to stop a Worker from stealing the identity of another Worker so
care should be taken.

1 dmf:
2 worker:
3 identity:
4 target: cloud
5 memberid: 1

Once the Worker has been started and registered with the Migration Database, you can manage it
with the Scheduler Admin Backends REST API with the Target cloud and name cloud/1:

1 curl -X 'GET' \
2 'https://localhost:7443/dmf/admin/api/v2/targets/cloud/backends/cloud%2F1' \
3 -H 'accept: application/json' \
4 -H 'Authorization: Basic YWRtaW46cGFzc3dvcmQ='

6

Release Notes for 1.0.0

2.2.6 Configure Sources

The Worker has the ability to service any number of DMF Sources. Remember that a DMF Source is
created using the Admin HTTP API and represents a Source platform. For this purpose, we will have
two Sources: ["POD_1", "POD_2"]. Workers will get jobs for all Sources based on priority, then time
of submission.

Configure the Worker to service both Sources:

1 dmf:
2 worker:
3 sources:
4 - "POD_1"
5 - "POD_2"

2.2.7 Configure State

By default, theWorker is configured to start polling for migration jobs when it is started. If you want
to disable so that you can start the Worker, but not start polling for jobs until a later time, then you
can change the initial state to STOPPED.

1 dmf:
2 worker:
3 state:
4 initial: STOPPED

Info
Once theWorker has been started and registered with theMigration Database, this can be changed
by using the Scheduler Admin RESTAPI. At this point, the database valuewill override the application
configuration.

1 curl -X 'PATCH' \
2 'https://worker:8443/dmf/admin/api/v2/targets/cloud/backends' \
3 -H 'accept: application/json' \
4 -H 'Authorization: Basic YWRtaW46cGFzc3dvcmQ=' \
5 -H 'Content-Type: application/json' \
6 -d '{
7 "name": "cloud/1",
8 "initialState": 1
9 }'

Now that we set it to 1 (STARTED), if the Worker is ever restarted, it will start polling for jobs.

2.2.8 Configure Job Settings

2.2.8.1 Job Cache The Worker collects prospective migration jobs in a local cache in order to
reduce the number of sorting queries performed since the database does not actually provide a
priority queue. If you find that the Worker has seemingly unnecessary high memory usage, then it
may be beneficial to reduce the size of the cache, or in the case of high database load reduce the
refresh rate.

1 dmf:
2 worker:
3 jobs:
4 cache:
5 size: 400
6 referesh: 1m

2.2.8.2 Max Jobs This is the max number of migration jobs that the Worker will process in par-
allel. Keep in mind that this value should be less than or equal to the number-of-thread configured

7

Release Notes for 1.0.0

for the worker-executor executor pool. If it is not, then jobs will be queued within the executor
and not executed until a thread is freed, thus potentially blocking another Worker from processing
it.

1 dmf:
2 worker:
3 jobs:
4 max: 400

The max number of jobs you want to execute depends on the sizing of the server that the Worker
is running, the Worker features you have enabled, and the migration command you are using. If
unknown, it is recommened to start low and scale up. It is easy to increase the max jobs, however,
difficult to stop jobs or handle an overloaded server.

Info
Once theWorker has been started and registered with theMigration Database, this can be changed
by using the Scheduler Admin RESTAPI. At this point, the database valuewill override the application
configuration.

1 curl -X 'PATCH' \
2 'https://worker:8443/dmf/admin/api/v2/targets/cloud/backends' \
3 -H 'accept: application/json' \
4 -H 'Authorization: Basic YWRtaW46cGFzc3dvcmQ=' \
5 -H 'Content-Type: application/json' \
6 -d '{
7 "name": "cloud/1",
8 "maxThreads": 120
9 }'

2.2.9 Configure Command Logging

There are three ways to configure command execution output. This is the output whenever a native
command is executed, for instance, like the migration command.

1. file: Redirects all output to a file. You can specify the location and file naming as well as if
the file should be removed upon successful execution of the command.

2. logger: Redirects all output to the Worker application logger
3. off: silences all output

1 dmf:
2 worker:
3 command:
4 logging:
5 type: file
6 file:
7 # The log file name format. You can use the following specifiers:
8 # * source: the source name
9 # * user: the target uid

10 # * phase: the migration phase (pre-sync, cutover)
11 # * job: the job id
12 # * date: the YYYY-MM-DD date
13 format: "%(source)-%(user)-user-migration.log"
14 location: /var/log/dmf
15 delete-on-success: false

2.2.10 Configure Doveadm

This section only discusses how to setup the doveadmconfiguration, but you should review theDMF
Doveadm Features documentation for more information on what each property is responsible for
and how you should use it.

Within DMF, we have a concept of a Worker type. For this purpose, we will use the type doveadm
which uses the doveadm command line tool supplied by Dovecot to process migration jobs. The

8

Release Notes for 1.0.0

documentation DMF Beyond Dovecot provides information about the other Worker types.

As already seenwhen configuring the Sources, theWorker supportsmigrating frommultiple Sources
to a Target. So, the doveadmWorker allows you to configure it per Source.

The configuration looks like:

1 dmf:
2 doveadm:
3 path: "/usr/bin/doveadm"
4 source:
5 ...

You can apply a special key called default and then all doveadm specific properties under that. In
which case, the Worker will use this configuration if there is not an override.

To override the default, use the source name as the key:

1 dmf:
2 doveadm:
3 path: "/usr/bin/doveadm"
4 source:
5 default:
6 ...
7 POD_1:
8 ...

Now, when theWorker gets amigration job for POD_1, it will use the POD_1 doveadm configuration,
but if it gets a job for POD_2, then it will use the default doveadm configuration.

2.3 Manage the Application

The application can be started/stopped/restarted using the systemd script dmf-worker.

Start example:

1 systemctl start dmf-worker

Stop example:

1 systemctl stop dmf-worker

Warning
The DMF Worker is very stateful in a number of ways. It is extremly important to only stop the
application while it is processing migraiton jobs in critical situations.

The proper way to stop a DMF worker is:

2.3.1 1. Pause the Worker

By using the DMF Scheduler Admin REST API.

1 curl -X 'PATCH' \
2 'https://scheduler:8443/dmf/admin/api/v2/targets/default/backends' \
3 -H 'accept: application/json' \
4 -H 'Authorization: Basic YWRtaW46cGFzc3dvcmQ=' \
5 -H 'Content-Type: application/json' \
6 -d '{
7 "name": "default/worker1",
8 "command": "PAUSE"
9 }'

9

Release Notes for 1.0.0

2.3.2 2. Check and Confirm on no Running Jobs

Once you have confirmed that the Worker has no running jobs, you can stop it. This can be con-
firmed by using the Scheduler API to get the current status of the Worker. If the Worker is paused
and has 0 threads, then it is not running any migration jobs.

1 curl -X 'GET' \
2 'https://localhost:7443/dmf/admin/api/v2/targets/default/backends/default%2Fwoker1' \
3 -H 'accept: application/json' \
4 -H 'Authorization: Basic YWRtaW46cGFzc3dvcmQ='

1 {
2 "name": "default/worker1",
3 "target": "default",
4 "initialState": 1,
5 "maxThreads": 200,
6 "status": 0, <-- 0 is paused
7 "threads": 0, <-- 0 threads means 0 jobs running
8 "command": null,
9 "updated": "2021-04-12T21:34:56.00Z"

10 }

2.3.3 3. Stop the worker either using the Admin API or service.

1 curl -X 'PATCH' \
2 'https://scheduler:8443/dmf/admin/api/v2/targets/default/backends' \
3 -H 'accept: application/json' \
4 -H 'Authorization: Basic YWRtaW46cGFzc3dvcmQ=' \
5 -H 'Content-Type: application/json' \
6 -d '{
7 "name": "default/worker1",
8 "command": "STOP"
9 }'

The Worker will stop polling for jobs and the application will close.

3 Doveadm Features

By default, the DMF Worker will use the Doveadm Worker type to process migration jobs. This
section lists all features, what they do, and how to configure them.

Thebelow configuration examples assume that the key is under dmf.doveadm.source.<sourceName>.
For instance, if the required configuration is to set my-property to true, then the following are equiv-
alent:

1 ...:
2 my-property: true
3 ---
4 dmf:
5 doveadm:
6 source:
7 mySource:
8 my-property: true

Info
A migration job will be successful unless something is misconfigured, a fatal unknown exception
occurs, or the migration command fails after the max retries.

10

Release Notes for 1.0.0

3.1 Analyze Log

The Worker will create a doveadm log analyzer which can be used for finding errors (some which
could be automatically resolved) and mailbox statistics.

By setting to false, the following functionality will be lost:

• Find and resolve duplicate UIDs
• Find and resolve failed save due to timeout
• Collect errors for the job response
• Collect sync mail statistics

Configuration:

1 ...:
2 analyze-log: true

3.2 Move Duplicates

This feature requires analyze-log.

While rare, it is possible that the source mailbox contains multiple messages with the same UID
causing a duplicate UID situation. This is detected by finding log messages containing “Expunged
message reappeared in session”. Any UIDs with this issue will be extracted and an attempt to fix
them will be made. This error causes the migration command to fail. If there is a retry configured,
the duplicate fix will be performed prior to the command retry.

Step:

1. The Worker will connect to the source host through an imap connection
2. Create a new mailbox named lost+found-<originalFolder> under the folder that the UID is

within.
3. Copy the message from the original folder to the lost and found folder
4. Expunge the original mail

Configuration:

1 ...:
2 move-duplicates: true

If a duplicate message is found at any point during the migration (even if it is resolved), it will be
included in the Migration details field in the dsync operation metadata as invalid.

Example:

1 {
2 "dsync": {
3 ...,
4 "invalid": {
5 "INBOX": [
6 "uid1",
7 "uid2"
8]
9 }

10 }
11 }

3.3 IMAPC Inbox

Currently, this feature executes shell commands cp and chown on a users homemail path as well as
delete folders that it creates through the Java API. Unfortunately, this requires DMF to be executed
with a user with this permission level.

11

Release Notes for 1.0.0

A hack to speed up delta syncs with pop3 uidl. It copies the local user’s INBOX mailbox to:

• <userHome>/imapc/.INBOX/.INBOX

This is done after the pre migration command but before the migration command.

Steps:

1. Get the user’s home path with: doveadm user -f home <userUid>
2. Get the user’s INBOX path with: doveadm mailbox path -u <userUid> INBOX
3. Copy the INBOX to homePath/.INBOX.INBOX: /usr/bin/cp -a homePath/.INBOX.INBOX
4. Change the home path owner to vmail: /bin/chown -R vmail:vmail homePath

If configured to remove the created INBOX path, this is done after the migration command, regard-
less of outcome, but before the post/failure migration command.

Configuration:

1 ...:
2 copy-imapc-inbox: true
3 remove-imapc-path: true

3.4 Metacache

Executes metacache flush and/or metacache clean for the target user. This is only done after a
successful migration command but before the post migration command.

Configuration:

1 ...:
2 flush-metacache: true
3 clean-metacache: true

3.5 Move User

This requires that the director property is enabled and the http configuration is complete.

This will make a move user request to the configured doveadm HTTP API for the target user.

Steps:

1. Get Workers IP address
2. Get the list of Dovecot backends from the HTTP API directorStatus command
3. Verify that the Worker’s IP is one of the backends
4. Move the target user to this backend with the HTTP API directorMove command

Configuration:

1 micronaut:
2 http:
3 services:
4 # Configure the HTTP client connection properties for the doveadm HTTP API
5 # https://docs.micronaut.io/latest/guide/configurationreference.html#io.micronaut.

http.client.ServiceHttpClientConfiguration
6 doveadm:
7 ssl:
8 enabled: true
9 trust-store:

10 path: file:/opt/open-xchange/dmf/certs/doveadm.p12
11 password: verysecretpassword
12 type: PKCS12
13 ...:
14 director:
15 enabled: true
16 move-user: true

12

Release Notes for 1.0.0

17 http:
18 url: "https://doveadmhttpapi"
19 username: admin
20 password: verysecretpassword
21 director-tag: aa
22 use-only-tagged: false

3.6 Fetch Container

Gets the userdb_container value in the configured container file for the value of imapcoptions de-
fined for the user. If imapcoptions is not set for the user, but this is enabled, then it wont be used.
The found value can be injected into migration commands with %{mdb:container}.

Configuration:

1 ...:
2 fetch-container: true
3 container-file: /etc/dovecot/passwd.container

3.7 Parallel Writes Retry

If retries are configured and a failure has occurred with error message containing failed: PUT .+
failed: Absolute request timeout expired, then the following setting override will be added to
the migration command prior to the retry:

• -o plugin/obox_max_parallel_writes=1

3.8 Mail Count

Properties to configure counting of mailbox messages and size.

3.8.1 Pre Mail Sync

Collect localmailbox stats after the premigration commandbut before themigration command.

The result is logged as: destination system statistics before sync. messages: {}, size: {}
(bytes)

Configuration:

1 ...:
2 count:
3 pre: true

3.8.2 Mail Sync

This feature requires analyze-log.

Count the number of saved and expunged mails during the migration command. The results are
stored with the job response as the sync saved and expunged message counts.

Configuration:

1 ...:
2 count:
3 sync: true

13

Release Notes for 1.0.0

3.8.3 Post Mail Sync

Collect local mailbox stats after the successful migration command but before the post migration
command. The results are stored with the job response as the target mailbox size and message
count.

Configuration:

1 ...:
2 post:
3 pre: true

3.8.4 Post Mail Sync Remote

Collect the remote mailbox stats after the successful migration command but before the post mi-
gration command. The results are stored with the job response as the origin mailbox size and
message count.

Configuration:

1 ...:
2 remote:
3 pre: true

There are four ways to configure how the remote count will be executed:

3.8.4.1 IMAPC Protocol This feature requires the imapc configuration or all imap connection
properties included with the migration job.

If the user’s Sourcehost definition does not use a status command, and the remote-protocol is set
as imapc, then a default remote count command will be used.

This command is:

1 doveadm -f tab -o imapc_ssl=<imaps/no> -o imapc_host=<sourcehost> -o imapc_user=<sourceUid
> -o imapc_password=<password> -o imapc_port=<port> -o mail=imapc: mailbox status -u <
sourceUid> "messages vsize" INBOX/* INBOX *

Configuration:

1 ...:
2 count:
3 remote-protocol: imapc
4 imapc:
5 host: host.with.imap
6 port: 143
7 prefix:
8 master-user: admin
9 master-password: verysecretpassword

3.8.4.2 Doveadm Protocol This feature requires the doveadm configuration.

If the user’s Sourcehost definition does not use a status command, and the remote-protocol is set
as doveadm, then a default remote count command will be used.

This command is: doveadm -f tab -o doveadm_password=<doveadm.password> mailbox status -
u <sourceUid> -S <doveadm.host>:<doveadm.port> "messages vsize" INBOX/* INBOX *

Configuration:

1 ...:

14

Release Notes for 1.0.0

2 count:
3 remote-protocol: doveadm
4 doveadm:
5 host: host.with.doveadm
6 port: 24245
7 password: verysecretpassword

3.8.4.3 Status Command If the user’s Sourcehost definition does include a status command,
then that command will be used. The command must use the mailbox status doveadm subcom-
mands as well as a tab formatter.

3.8.4.4 Configuration To override all other options, you can specify the remote count command
using configuration.

Configuration:

1 ...:
2 count:
3 remote-command:
4 name: doveadm
5 options:
6 - name: -f
7 value: tab
8 - name: -o
9 value: "imapc_user=%{mdb:ruid}"

10 - name: -o
11 value: "imapc_password=%{conf:imapc_master_password}"
12 - name: -o
13 value: "imapc_host=%{mdb:sourcehost}"
14 - name: -o
15 value: "mail=imapc:"
16 sub-command:
17 name: mailbox status
18 arguments:
19 - "messages vsize"
20 - "INBOX/*"
21 - "INBOX"
22 - "*"
23 options:
24 - name: -u
25 value: "%{mdb:uid}"

3.9 Migration Retry

Properties to configure retrying the migration command after a failure.

3.9.1 Max Retries

Max number of retries for doveadm sync errors which are non fatal. To override any specific error
code, use code-max.

Override for max on the error code level.

Configuration:

1 ...:
2 retry:
3 max: 1
4 code-max:
5 75: 5

15

Release Notes for 1.0.0

3.9.2 Retry Sleep

The amount of time inms to sleep before retrying themigration command. To override any specific
error code use code-sleep.

Override for sleep on the error code level.

Configuration:

1 ...:
2 retry:
3 sleep: 5000
4 code-sleep:
5 75: 15000

3.10 Commands

The Doveadm DMF Worker has the ability to execute various commands throughout the migration
job. This includes the main migration command. The migration command must be a Doveadm-
Sync command. If you are looking to do something else, then you likely do not want to use the
Doveadm DMF Worker, and should look into the DMF Beyond Dovecot documentation. Any other
command constraints will be listed in the following sections.

3.10.1 Property Injection

Commands can have properties injected into them. By default, you can do the following:

• MDB formatters are used like %{mdb:X}, where X can be: md5path, 2chrruid, container, uid,
ruid, sourcehost, source, sourcepasswd, imapcoptions, email, sourceport, imapc_ssl, exclude

• Conf formatters are used like %{conf:Y}, where Y can be: imapc_host, imapc_master_pass-
word, imapc_master_user, imapc_prefix, imapc_port

You can also define custom properties that can be injected into commands. You will use the same
%{conf:Y} formatter where Y will be defined under the property:

• dmf.doveadm.source.<sourceName>.command.inject

For example, if you define:

1 ...:
2 command:
3 inject:
4 test: value

then you can have a command doveadm -o setting=%{conf:test} and the commandwould resolve
to doveadm -o setting=value

The order of injection is:

1. custom inject properties
2. imapc properties - from config
3. user properties - from job

All commands support property injection.

3.10.2 Pre Mail Sync

This can be any shell command and it is executed prior to the migration command. An applica-
ble example would be to specify a shell script that takes the sourceUid and locks the source mail
account.

Configuration:

16

https://wiki.dovecot.org/Tools/Doveadm/Sync
https://wiki.dovecot.org/Tools/Doveadm/Sync

Release Notes for 1.0.0

1 ...:
2 sync:
3 pre:
4 name: echo
5 arguments:
6 - pre
7 - sync
8 - "%{mdb:uid}"
9 cutover:

10 pre:
11 name: echo
12 arguments:
13 - pre
14 - cutover
15 - "%{mdb:uid}"

3.10.3 Mail Sync

Overrides the migration command. This must be a Doveadm-Sync command.

Configuration:

1 ...:
2 sync:
3 sync:
4 name: doveadm
5 ...
6 cutover:
7 sync:
8 name: doveadm
9 ...

3.10.4 Post Mail Sync

This can be any shell command and it is executed after a successful migration command. An appli-
cable example would be to specify a shell script that takes the sourceUid or targetUid and changes
a proxy status.

Configuration:

1 ...:
2 sync:
3 pre:
4 name: echo
5 arguments:
6 - post
7 - sync
8 - "%{mdb:uid}"
9 cutover:

10 pre:
11 name: echo
12 arguments:
13 - post
14 - cutover
15 - "%{mdb:uid}"

3.10.5 Mail Sync Failure

This can be any shell command and it is executed after a migration command failure. If retries are
configured, this is only executed if the last retry is still a failure. An applicable example would be to
specify a shell script that takes the sourceUid and unlocks the source mail account.

Configuration:

17

https://wiki.dovecot.org/Tools/Doveadm/Sync

Release Notes for 1.0.0

1 ...:
2 sync:
3 pre:
4 name: echo
5 arguments:
6 - failure
7 - sync
8 - "%{mdb:uid}"
9 cutover:

10 pre:
11 name: echo
12 arguments:
13 - failure
14 - cutover
15 - "%{mdb:uid}"

3.11 Configurable Failures

By default, the only things that will mark a migration as FAILURE, is a misconfiguration or a failed
migration command. However, the other steps in the migration can be configured to mark the
migration as FAILURE if they fail.

Note: This will also cause the post migration failure command to be executed. Currently it is only
executed if the migration command fails.

This feature is useful when, for instance, you configure a post migration command to do some
processing of the mail data, and if that processing fails, then the user should not be marked as
migrated.

By default, the doveadm migration command is the only step that will mark a migration as failed if
it fails. All other steps by default will not mark a migration as failed if they fail, however, they can
be configured to do so. Note: this will cause the post migration

Configuration:

1 ...:
2 failure-flags:
3 cutover:
4 post-migration-command: true

3.12 Order of Operations

The migration job order of operations (only if configured):

1. Move User
2. Pre Mail Sync Command
3. Copy IMAPC Inbox
4. Pre Mail Sync Count
5. Mail Sync(Migration) Command + Mail Sync Count
6. Remove IMAPC Inbox

Successful Migration Command:

1. Post Mail Sync Count
2. Post Mail Sync Remote Count
3. Flush Metacache
4. Clean Metacache
5. Post Mail Sync Command

Failed Migration Command:

1. Mail Sync Failure Command

18

Release Notes for 1.0.0

3.13 Job Response Details

Each operation will provide a status in the Migration Job Response details field. This field is a JSON
array with the results from the order of operations.

The operationwill only be included if the feature supporting that operation is enabled. For instance,
if there is not a Pre Mail Sync Command configured, then there will not be a “pre migration com-
mand” operation in the details.

Example:

1 [
2 {
3 "pre migration command": {
4 "success": true,
5 "command": "echo pre mail sync user1",
6 "exitCode": 0,
7 "errors": []
8 }
9 },

10 {
11 "copy imapc inbox": {
12 "success": true,
13 "errors": []
14 }
15 },
16 {
17 "count local mailbox pre sync": {
18 "success": true,
19 "command": "doveadm -f tab mailbox status -u user1 \"messages vsize\" INBOX/* INBOX

*",
20 "exitCode": 0,
21 "errors": []
22 }
23 },
24 {
25 "dsync": {
26 "success": true,
27 "command": "doveadm -o imapc_host=host -o imapc_user=user1 -o imapc_password=<hidden

> -o imapc_port=143 backup -R -u user1 imapc:",
28 "exitCode": 0,
29 "errors": [],
30 "attempts": 1,
31 "saved": {
32 "INBOX": 50,
33 "special": 25
34 },
35 "expunged": {
36 "special": 5
37 },
38 "invalid": {
39 "INBOX": [
40 "uid1",
41 "uid2"
42]
43 }
44 }
45 },
46 {
47 "remove imapc inbox": {
48 "success": true,
49 "errors": []
50 }
51 },
52 {
53 // This should only exist after a dsync success
54 "count local mailbox post sync": {
55 "success": true,
56 "command": "doveadm -f tab mailbox status -u user1 \"messages vsize\" INBOX/* INBOX

*",
57 "exitCode": 0,

19

Release Notes for 1.0.0

58 "errors": []
59 }
60 },
61 {
62 // This should only exist after a dsync success
63 "count remote mailbox": {
64 "success": true,
65 "command": "doveadm -f tab -o imapc_host=host -o imapc_user=user1 -o imapc_password

=<hidden> -o imapc_port=143 -o mail=imapc: mailbox status -u user1 \"messages
vsize\" INBOX/* INBOX *",

66 "exitCode": 0,
67 "errors": []
68 }
69 },
70 {
71 // This should only exist after a dsync success
72 "flush user metacache": {
73 "success": true,
74 "command": "doveadm metacache flush -u user1",
75 "exitCode": 0,
76 "errors": []
77 }
78 },
79 {
80 // This should only exist after a dsync success
81 "clean user metacache": {
82 "success": false,
83 "command": "doveadm metacache clean -u user1",
84 "exitCode": 75,
85 "errors": ["some error message"]
86 }
87 },
88 {
89 // This should only exist after a dsync success
90 "post migration command": {
91 "success": true,
92 "command": "echo post mail sync user1",
93 "exitCode": 0,
94 "errors": []
95 }
96 },
97 {
98 // This should only exist after a failure
99 "post migration failure command": {

100 "success": true,
101 "command": "echo post mail sync failure user1",
102 "exitCode": 0,
103 "errors": []
104 }
105 }
106]

4 Worker Health

As part of the Micronaut framework, each Worker node monitors several components and reports
a health check, which is reachable under the path /health.

It’s possible to configure the endpoint to be reachable without authentication and provide a simple
status output, and then all other details when authenticated.

4.1 Without Authentication

1 curl https://worker:8443/health

Sample output:

20

https://docs.micronaut.io/latest/guide/index.html#healthEndpoint

Release Notes for 1.0.0

1 {
2 "status" : "UP"
3 }

4.2 With Authentication and Full Details

1 curl -u admin:secret https://worker:8443/health

Sample output:

1 {
2 "name": "worker",
3 "status": "UP",
4 "details": {
5 "jdbc": {
6 "name": "worker",
7 "status": "UP",
8 "details": {
9 "jdbc:mysql://dmf-db:3306/migration?createDatabaseIfNotExist=true": {

10 "name": "worker",
11 "status": "UP",
12 "details": {
13 "database": "MariaDB",
14 "version": "10.5.4-MariaDB-1:10.5.4+maria~focal"
15 }
16 }
17 }
18 },
19 "compositeDiscoveryClient()": {
20 "name": "worker",
21 "status": "UP"
22 },
23 "diskSpace": {
24 "name": "worker",
25 "status": "UP",
26 "details": {
27 "total": 126557421568,
28 "free": 71800446976,
29 "threshold": 10485760
30 }
31 },
32 "service": {
33 "name": "worker",
34 "status": "UP"
35 }
36 }
37 }

4.3 Configuration

Individual health indicators can be turned off with configuration settings, which can be specified
through modifying the dmf-worker.yml configuration file or through environment variables.

Configuration Property
Indicator
Tree Description

endpoints.health.disk-
space.enabled

diskSpace Monitors the available disk space of a
configurable path and
threshold:endpoints.health.disk-space.path
(defaults to
“.”)endpoints.health.disk-space.threshold
(in bytes, defaults to 10 MB)

endpoints.health.jdbc.enabledjdbc Monitors databases.

21

Release Notes for 1.0.0

5 Worker Metrics

Each Worker node exports a number of metrics, currently all being provided by the Micronaut
framework. Its metrics API provides JSON data and also offers a Prometheus API.

Note that authentication is required to query metrics and their values by default.

To change that behavior andnot require authentication, set the configurationproperty endpoints.metrics.sensitive
to false, either in the configuration file dmf-worker.yml or in as an environment variable.

The whole metrics API can also be disabled altogether by setting endpoints.metrics.enabled to
false.

5.1 List of Metrics

A list of metric names can be queried using

1 curl -u admin:secret https://worker:8443/metrics

Sample output:

1 {
2 "names": [
3 "executor",
4 "executor.active",
5 "executor.completed",
6 "executor.pool.core",
7 "executor.pool.max",
8 "executor.pool.size",
9 "executor.queue.remaining",

10 "executor.queued",
11 "hikaricp.connections",
12 "hikaricp.connections.acquire",
13 "hikaricp.connections.active",
14 "hikaricp.connections.creation",
15 "hikaricp.connections.idle",
16 "hikaricp.connections.max",
17 "hikaricp.connections.min",
18 "hikaricp.connections.pending",
19 "hikaricp.connections.timeout",
20 "hikaricp.connections.usage",
21 "jvm.buffer.count",
22 "jvm.buffer.memory.used",
23 "jvm.buffer.total.capacity",
24 "jvm.classes.loaded",
25 "jvm.classes.unloaded",
26 "jvm.gc.live.data.size",
27 "jvm.gc.max.data.size",
28 "jvm.gc.memory.allocated",
29 "jvm.gc.memory.promoted",
30 "jvm.gc.pause",
31 "jvm.memory.committed",
32 "jvm.memory.max",
33 "jvm.memory.used",
34 "jvm.threads.daemon",
35 "jvm.threads.live",
36 "jvm.threads.peak",
37 "jvm.threads.states",
38 "logback.events",
39 "process.cpu.usage",
40 "process.files.max",
41 "process.files.open",
42 "process.start.time",
43 "process.uptime",
44 "system.cpu.count",
45 "system.cpu.usage",
46 "system.load.average.1m"
47]

22

Release Notes for 1.0.0

48 }

5.2 Query a Metric

Querying a specific metric can be achieved as follows:

1 curl -u admin:secret https://worker:8443/metrics/process.uptime

Sample output:

1 {
2 "name": "process.uptime",
3 "measurements": [
4 {
5 "statistic": "VALUE",
6 "value": 43.324
7 }
8],
9 "description": "The uptime of the Java virtual machine"

10 }

5.3 Prometheus Metrics API

The values of allmetrics canbe fetched in Prometheus’ format using the /prometheus endoint:

1 curl -u admin:secret https://worker:8443/prometheus

A portion of the sample output:

1 # HELP hikaricp_connections_active Active connections
2 # TYPE hikaricp_connections_active gauge
3 hikaricp_connections_active{pool="HikariPool-1",} 0.0
4 # HELP jvm_buffer_memory_used_bytes An estimate of the memory that the Java virtual

machine is using for this buffer pool
5 # TYPE jvm_buffer_memory_used_bytes gauge
6 jvm_buffer_memory_used_bytes{id="direct",} 3.35544376E8
7 jvm_buffer_memory_used_bytes{id="mapped",} 0.0
8 # HELP jvm_buffer_total_capacity_bytes An estimate of the total capacity of the buffers in

this pool
9 # TYPE jvm_buffer_total_capacity_bytes gauge

10 jvm_buffer_total_capacity_bytes{id="direct",} 3.35544375E8
11 jvm_buffer_total_capacity_bytes{id="mapped",} 0.0

6 Beyond Dovecot

This documentation discusses the uses of DMF outside of Dovecot. It is not necessary to review this
information for a standard DMF deployment.

Warning
If you have not read all other documentation, you should go back before proceeding.

As previously noted, while DMF stands for Dovecot Migration Framework, in reality, it is more like a
Mail Migration Framework because nothing actually limits you to Dovecot. In fact, bare bones, it is
just a job processing framework that allows you to plug in any JobWorker to process your job.

6.1 Job Workers

The DMF Worker deploys with three Job Workers out of the box.

23

Release Notes for 1.0.0

The type of job worker is configured using the dmf.worker.type property.

6.1.1 Doveadm

The doveadmworker is the standardDMF jobworker and it is explained in detail in theDMFDoveadm
Features section.

1 dmf:
2 worker:
3 type: doveadm

6.1.2 Simulator

The simulator worker is used for testing both during development and deployment.

This worker does nothing but sleep for a random amount of time between 1 and 10 seconds inclu-
sive - “simulating” the work.

1 dmf:
2 worker:
3 type: simulator

6.1.3 Command

The commandworker is used to simply execute themigration command. It does nothingmore.

The migration command is not converted in the same way that the doveadm worker does it. It does
support property injection, however, commandswill not be converted to doveadm format andpass-
words will not be hidden.

Warning
do not hard code or inject passwords into the migration command.

This worker allows you to execute any kind of command. You could write a shell command which
performs the actual mail sync and configure the migration command to use it.

1 dmf:
2 worker:
3 type: command

6.2 Custom Migration

It’s also possible to implement a custom Job Worker to perform the migration in a custom way that
the existing workers cannot do and then plug it into DMF.

7 Shipped Packages and Version

7.1 Package open-xchange-dmf-worker

DMF Worker Dovecot Migration Framework Worker.
Version: 1.0.0-6
Type: Other

7.1.1 Installation

Install on nodes with package installer apt-get or yum:

24

Release Notes for 1.0.0

<package installer> install open-xchange-dmf-worker

7.1.2 Configuration

For details, please see appendix A
/opt/open-xchange/dmf/worker/etc/dmf-worker.yml (page 31)

A Configuration Files

File 1 /opt/open-xchange/dmf/worker/etc/dmf-worker.yml

1 micronaut:
2 # The Worker exposes web services for metrics.
3 # SSL configuration
4 # Required for production environments.
5 # See https://docs.micronaut.io/latest/guide/index.html#https for details.
6 ssl:
7 enabled: true
8 key-store:
9 path: file:/opt/open-xchange/dmf/certs/keystore.p12

10 type: PKCS12
11 password:
12 port: 8443
13 application:
14 name: worker
15 metrics:
16 enabled: true
17 export:
18 prometheus:
19 enabled: true
20 descriptions: true
21 step: PT1M
22 ####
23 # Configure server thread pools.
24 # See Micronaut doc: https://docs.micronaut.io/latest/guide/index.html#threadPools
25 ####
26 executors:
27 ####
28 # The pool where workers are executed.
29 # The number of threads must be greater than dmf.worker.jobs.max or there
30 # will be thread queuing which will cause jobs to wait.
31 ####
32 worker-executor:
33 name: worker-executor
34 # No more than the number of threads
35 type: fixed
36 number-of-threads: 100
37 ####
38 # The pool where non worker threads are executed. This is mainly related to log
39 # processing.
40 # The number of threads must be at least equal to worker-executor
41 ####
42 command-executor:
43 name: command-executor
44 # No more than the number of threads
45 type: fixed
46 number-of-threads: 100
47 http:
48 services:
49 ####
50 # Configure the HTTP connection properties for the doveadm HTTP APIs.
51 # This configuration is shared for all defined doveadm HTTP configurations.
52 # This is where SSL can be enabled and configured.
53 ####
54 doveadm:
55 # ssl:

25

Release Notes for 1.0.0

56 # enabled: true
57 # trust-store:
58 # path: file:/opt/open-xchange/dmf/certs/doveadm.p12
59 # password:
60 # type: PKCS12
61 security:
62 enabled: true
63 #ip-patterns:
64 # - 127.0.0.1
65 ---
66 endpoints:
67 all:
68 enabled: true
69 sensitive: true
70 ---
71 # Set the basic auth username and password that can be used to reach
72 # any built in endpoint
73 http:
74 admin:
75 username:
76 password:
77 ---
78 # This will connect the worker to the DMF Migration database
79 # to get/update worker state and get/update migration jobs
80 datasources:
81 default:
82 # url should use createDatabaseIfNotExist=true if the database will not
83 # already exist: https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-reference-

configuration-properties.html
84 url: jdbc:mysql://localhost:3306/migration?createDatabaseIfNotExist=true
85 username:
86 password:
87 dialect: MYSQL
88 driverClassName: org.mariadb.jdbc.Driver
89 ---
90 dmf:
91 worker:
92 sources: default
93 state:
94 # The workers initial state. When using the database state type, if the worker has

been
95 # previously started then it will use the initial state in the database to determine

how to start.
96 # Current options:
97 # 1. STARTED
98 # 2. STOPPED
99 initial: STARTED

100 # The way the worker will collect and store its state.
101 # Options:
102 # 1. database - uses the DMF migration database
103 # 2. config - uses this config to get the initial state and max jobs
104 type: database
105 jobs:
106 cache:
107 size: 1000
108 refresh: 5s
109 # Max number of jobs to queue at a time. When using the database state type, if the

Worker has previously
110 # been started, then this value will be ignored and the maxThreads defined for the

worker will be used.
111 #
112 # Keep in mind that if the executor pool is smaller than this number then
113 # some jobs will be waiting in the executor pool.
114 max: 10
115 termination:
116 # The max time to wait in ms for jobs to complete on application termination

before willfully shutting down.
117 # Shutting down the application while jobs are running can leave DMF in a corrupt

state if jobs do not complete.
118 # While jobs should shutdown quickly when abort is called, this should be set to a

high value.
119 timeout: 30000

26

Release Notes for 1.0.0

120 poller:
121 # The job poller type. Current options:
122 # 1. database - collects jobs from the DMF migration database
123 # 2. simulator - creates simulated jobs meant for testing other parts of DMF
124 type: database
125 simulator:
126 max-jobs: 5
127 max-wait-ms: 0
128 identity:
129 # Identifies a group of DMF workers. This should be the same for all DMF workers

that service a particular Dovecot platform.
130 # This should match a "target" that has been registered with the DMF REST API.
131 target: default
132 # Identifies this worker within a group of DMF workers. This should be unique within

a target.
133 memberid:
134 # The worker type. Current options:
135 # 1. doveadm - uses doveadm to complete the migration job
136 # 2. command - executes the migration command as is
137 # 3. simulator - does not actually run any commands meant for testing the Worker

roundtrip
138 type: doveadm
139 command:
140 logging:
141 # Where to redirect standard out and error when running commands
142 # Options:
143 # 1. file: logs to a file (see file properties)
144 # 2. logger: logs to the logger
145 # 3. off: silences logging
146 type: file
147 file:
148 # The log file name format. You can use the following specifiers:
149 # * source: the source name
150 # * user: the target uid
151 # * phase: the migration phase (pre-sync, cutover)
152 # * job: the job id
153 # * date: the YYYY-MM-DD date
154 format: "%(source)-%(user)-user-migration.log"
155 location: /app
156 delete-on-success: true
157 # Define doveadm properties
158 doveadm:
159 # The path to the doveadm command
160 path: "/usr/bin/doveadm"
161 # DMF Source specific properties should go under the source name key
162 source:
163 # If a source is not defined then it will use the default if it exists
164 default:
165 ####
166 # The worker will create a log analyzer which can be used for finding errors (some

which
167 # could be automatically resolved) and mailbox statistics.
168 # By setting to false, the following functionality will be lost:
169 # - Find and resolve duplicate UIDs
170 # - Find and resolve failed save due to timeout
171 # - Collect errors for the job response
172 # - Collect sync mail statistics
173 ####
174 analyze-log: true
175 ####
176 # If the migration command fails due to mails with duplicate UIDs, then it will

attempt
177 # to connect to the source IMAP to move those duplicate mails into a folder called
178 # lost+found-<originalFolderName >. If retry is enabled then the command will be

rerun.
179 # Duplicates can only be found if analyze-log is enabled.
180 ####
181 move-duplicates: false
182 ####
183 # A hack to speed up delta syncs with pop3 uild. It copies the local user's INBOX
184 # mailbox to <userHome>/imapc/.INBOX/.INBOX.
185 # This is done after the pre migration script but before the migration command

27

Release Notes for 1.0.0

186 ####
187 copy-imapc-inbox: false
188 ####
189 # If using copy-imapc-inbox, this will remove the created imapc folder for the

local user.
190 # This is done after the migration command, regardless of outcome, but before
191 # any post migration script
192 ####
193 remove-imapc-path: false
194 ####
195 # Executes metacache flush for the local user.
196 # This is only done after a successful migration command but before the post

migration script.
197 ####
198 flush-metacache: false
199 ####
200 # Executes metacache clean for the local user.
201 # This is only done after a successful migration command but before the post

migration script.
202 ####
203 clean-metacache: false
204 ####
205 # Gets the userdb_container value in the file /etc/dovecot/passwd.container for

the value of
206 # imapcoptions defined for the user. If imapcoptions is not set for the user, but

this is enabled
207 # then it wont be used. The found value can be injected into migration commands

with %{mdb:container}
208 ####
209 fetch-container: false
210 ####
211 # The dovecot passwd.container file path that is used when fetch-container is

enabled.
212 ####
213 container-file: /etc/dovecot/passwd.container
214 ####
215 # Target director config
216 ####
217 director:
218 ####
219 # Informs the worker that it should use its director's HTTP API
220 # to communicate about the migration. This requires the http configuration
221 # and the HTTP API to exist on a director.
222 ####
223 enabled: false
224 ####
225 # Currently not supported
226 ####
227 use-sourcehost: false
228 ####
229 # Inform the director layer via the HTTP API about being managed by this backend

.
230 # If use-director property is set then this will use the directors IP.
231 ####
232 move-user: false
233 ####
234 # Properties to configure counting of mailbox messages and size
235 ####
236 count:
237 ####
238 # Collect local mailbox stats after the pre migration script but before the
239 # migration command. The results are simply logged.
240 ####
241 pre: true
242 ####
243 # Count the number of saved and expunged mails during the migration command.
244 # The results are stored with the job response as the sync saved and expunged
245 # message counts.
246 # Sync stats can only be collected if analyze-log is enabled.
247 ####
248 sync: true
249 ####

28

Release Notes for 1.0.0

250 # Collect local mailbox stats after the successful migration command but
251 # before the post migration script. The results are stored with the job
252 # response as the target mailbox size and message count.
253 ####
254 post: true
255 ####
256 # Collect the remote mailbox stats after the successful migration command but
257 # before the post migration script. The results are stored with the job
258 # response as the origin mailbox size and message count.
259 ####
260 remote: true
261 ####
262 # The protocol to use when executing the remote count if the default command

will be used.
263 # Options:
264 # - doveadm: doveadm -o doveadm_password=<doveadm.password> mailbox status -u

<ruid>
265 # -S <doveadm.host>:<doveadm.port> "messages vsize" INBOX/* INBOX *
266 # - imapc: doveadm -o imapc_ssl=<imaps/no> -o imapc_host=<sourcehost> -o

imapc_user=<ruid>
267 # -o imapc_password=<password> -o imapc_port=<port> -o mail=imapc:
268 # mailbox status -u <uid> "messages vsize" INBOX/* INBOX *
269 ####
270 remote-protocol: imapc
271 ####
272 # When enabled, the remote mailbox count by default will execute doveadm mailbox

status
273 # using the doveadm remote protocol. This can be overridden by defining the

command
274 # with the sourcehost definition. It can also be overridden here which will take

precedence.
275 # The format here is the common command format. However, there are restrictions

to this.
276 # The root command "doveadm" and sub command "mailbox status" with fields "

messages vsize" will
277 # always be used and without debug or verbosity, and will use a tab formatter.

Do not change these
278 # or it will corrupt the counting. The only important thing to include are

setting overrides and
279 # mailbox status mailbox patterns.
280 # Format:
281 # name: doveadm
282 # options:
283 # -
284 # name: -o
285 # value: "imapc_user=%{mdb:ruid}"
286 # -
287 # name: -o
288 # value: "imapc_password=%{conf:imapc_master_password}"
289 # -
290 # name: -o
291 # value: "imapc_host=%{mdb:sourcehost}"
292 # -
293 # name: -o
294 # value: "mail=imapc:"
295 # sub-command:
296 # name: mailbox status
297 # arguments:
298 # - "messages vsize"
299 # - "INBOX/*"
300 # - "INBOX"
301 # - "*"
302 # options:
303 # -
304 # name: -u
305 # value: "%{mdb:uid}"
306 ####
307 remote-command:
308 ####
309 # Properties to configure retrying the migration command after a failure.
310 ####
311 retry:

29

Release Notes for 1.0.0

312 ####
313 # Max number of retries for doveadm sync errors which are non fatal.
314 # To override any specific error code, use code-max.
315 ####
316 max: 1
317 ####
318 # The amount of time in ms to sleep before retrying the migration command.
319 # To override any specific error code use code-sleep.
320 ####
321 sleep: 5000
322 ####
323 # Override for max on the error code level. Format is:
324 # code-max:
325 # <code>: <num_retries>
326 ####
327 code-max:
328 134: 2
329 75: 4
330 ####
331 # Override for sleep on the error code level. Format is:
332 # code-sleep:
333 # <code>: <time_in_ms>
334 ####
335 code-sleep:
336 75: 15000
337 ####
338 # Properties to define connection to a local DoveAdm HTTP API.
339 # Currently this is only used when the director is enabled.
340 ####
341 #http:
342 # url: "https://doveadmhttpapi"
343 # username:
344 # password:
345 # director-tag: aa
346 # use-only-tagged: false
347 ####
348 # Properties for running doveadm commands on the Source using
349 # the doveadm protocol
350 ####
351 #doveadm:
352 # password:
353 # host:
354 # port: 24245
355 ####
356 # IMAP connection properties use to inject into commands or use
357 # for connecting to a users mailbox. You may specify some or all properties.
358 # For IMAP connections, these will override values defined with the job.
359 ####
360 imapc:
361 host:
362 port:
363 prefix:
364 master-user:
365 master-password:
366 ####
367 # Specify java mail api properties here
368 ####
369 session-properties:
370 ####
371 # Properties to configure commands accessible by the worker to be executed
372 # during the specific migration phases.
373 #
374 # pre: executed prior to the migration command and some other configurable

operations.
375 # sync: Overrides the migration command.
376 # post: executed after a successful migration command and some other configurable

operations.
377 # failure: executed after a migration command failure. When retries are enabled,

this is
378 # only executed if the last retry is a failure, otherwise post is executed.
379 #
380 # Commands can have properties injected into them:

30

Release Notes for 1.0.0

381 # MDB formatters are used like %{mdb:X}, where X can be: md5path, 2chrruid,
container,

382 # uid, ruid, sourcehost, source, sourcepasswd, imapcoptions, email, sourceport,
imapc_ssl, exclude

383 # Conf formatters are used like %(conf:Y}, where Y can be any value defined in
the "inject" config

384 # or: imapc_host, imapc_master_password , imapc_master_user, imapc_prefix,
imapc_port

385 ####
386 command:
387 ####
388 # Custom properties that can be defined and injected into the migration or
389 # other definable commands. For example, if you define:
390 # inject:
391 # test: value
392 # then you can have a command "doveadm backup -o setting=%{conf:test}" and the

command
393 # would resolve to "doveadm backup -o setting=value"
394 # The order of injection is:
395 # 1. inject properties
396 # 2. user properties - from job
397 # 3. imapc properties - from config
398 ####
399 inject:
400 ####
401 # Overrides the migration command during pre-sync.
402 #
403 # Format + Example:
404 # sync:
405 # sync:
406 # name: doveadm
407 # options:
408 # -
409 # name: -o
410 # value: "imapc_user=%{mdb:ruid}"
411 # -
412 # name: -o
413 # value: "imapc_password=%{conf:imapc_master_password}"
414 # -
415 # name: -o
416 # value: "imapc_host=%{mdb:sourcehost}"
417 # sub-command:
418 # name: backup
419 # flags: -R
420 # arguments: "imapc:"
421 # options:
422 # -
423 # name: -u
424 # value: "%{mdb:uid}"
425 ####
426 sync:
427 ####
428 # Example:
429 # pre:
430 # name: echo
431 # arguments: "%{mdb:uid}"
432 ####
433 pre:
434 sync:
435 post:
436 failure:
437 ####
438 # Overrides the migration command during cutover. See sync for format.
439 ####
440 cutover:
441 pre:
442 sync:
443 post:
444 failure:
445 ####
446 # By default, the doveadm migration command is the only step that will mark a

migration

31

Release Notes for 1.0.0

447 # as failed if it fails. All other steps by default will not mark a migration as
failed

448 # if they fail, however, they can be configured to do so.
449 # Note: this will cause the post migration failure command to be executed
450 #
451 # Supported steps:
452 # director-use-sourcehost
453 # director-move-user
454 # pre-migration-command
455 # post-migration-command
456 # copy-imapc-inbox
457 # remove-imapc-inbox
458 # count-local-pre
459 # count-local-post
460 # count-remote
461 # flush-metacache
462 # clean-metacache
463 #
464 # Use the step name as key and true as value to enable failure
465 # Example that will marek the migration as failed if the pre-migration-command

step fails:
466 # failure-flags:
467 # pre:
468 # pre-migration-command: true
469 ####
470 failure-flags:
471 ####
472 # Failure flags for pre-sync phase
473 ####
474 pre:
475 ####
476 # Failure flags for cutover phase
477 ####
478 cutover:

32

	General Information
	Warnings
	Delivery Comment
	Install Package Repository
	Build Dependencies

	Worker Install
	Install the Package
	Configure the Application
	Configure HTTPS
	Configure Authentication
	Endpoints
	Security

	Configure Data Source
	Configure Executor Pools
	Configure Identity
	Configure Sources
	Configure State
	Configure Job Settings
	Job Cache
	Max Jobs

	Configure Command Logging
	Configure Doveadm

	Manage the Application
	1. Pause the Worker
	2. Check and Confirm on no Running Jobs
	3. Stop the worker either using the Admin API or service.

	Doveadm Features
	Analyze Log
	Move Duplicates
	IMAPC Inbox
	Metacache
	Move User
	Fetch Container
	Parallel Writes Retry
	Mail Count
	Pre Mail Sync
	Mail Sync
	Post Mail Sync
	Post Mail Sync Remote
	IMAPC Protocol
	Doveadm Protocol
	Status Command
	Configuration

	Migration Retry
	Max Retries
	Retry Sleep

	Commands
	Property Injection
	Pre Mail Sync
	Mail Sync
	Post Mail Sync
	Mail Sync Failure

	Configurable Failures
	Order of Operations
	Job Response Details

	Worker Health
	Without Authentication
	With Authentication and Full Details
	Configuration

	Worker Metrics
	List of Metrics
	Query a Metric
	Prometheus Metrics API

	Beyond Dovecot
	Job Workers
	Doveadm
	Simulator
	Command

	Custom Migration

	Shipped Packages and Version
	Package open-xchange-dmf-worker
	Installation
	Configuration

	Configuration Files

