
PowerDNS Cloud Control

Monitoring

Apr 24, 2024

Release 2.5.2

©2024 by Open-Xchange AG and PowerDNS.COM BV. All rights reserved. Open-Xchange, Pow-

erDNS, the Open-Xchange logo and PowerDNS logo are trademarks or registered trademarks

of Open-Xchange AG. All other company and/or product names may be trademarks or regis-

tered trademarks of their owners. Information contained in this document is subject to change

without notice.

PowerDNS Cloud ControlMonitoring

Contents

1 Overview 1
1.1 Cloud Control Monitoring . 1

2 Helm Charts 2
2.1 Charts . 2

2.2 Usage . 3

2.2.1 Install Tools . 3

2.2.2 Download Helm Charts . 3

2.2.3 Deploying Cloud Control Monitoring . 3

2.2.4 Accessing Grafana . 4

2.2.5 Accessing Prometheus . 4

3 OpenShift 5
3.1 OpenShift . 5

3.1.1 Compatibility mode . 5

3.1.2 Conflicts with OpenShift-managed components 6

4 Prometheus Adapter 7
4.1 Adapter . 7

4.2 Predefined Metrics . 8

4.3 Horizontal Pod Autoscaler . 9

5 Grafana Dashboards 10
5.1 Dashboards . 10

5.2 Download . 11

6 Prometheus Alert Rules 12
6.1 Alert Rules . 12

6.2 Download . 13

7 Component Reference 14
7.1 Operators . 14

7.2 Components . 15

8 Configuration 16
8.1 Configuration . 16

8.1.1 Enable/Disable components . 16

8.1.2 Ingresses & Loadbalancers . 17

8.1.3 Private Registries . 19

8.1.4 Security contexts . 20

8.1.5 Scheduling controls . 23

8.1.6 Prometheus: Storage . 26

8.1.7 Prometheus: Thanos . 27

i

PowerDNS Cloud ControlMonitoring

1 Overview

1.1 Cloud Control Monitoring
Cloud Control Monitoring helps provide insight into Cloud Control deployments. The monitor-

ing stack is built using the following components:

• Grafana - Visualisation
• Prometheus - Metrics gathering & storage
• kube-state-metrics (KSM) - Service that exposes Kubernetes metrics to prometheus
• Prometheus Adapter - Exposes Prometheus metrics via Kubernetes Metrics API

The stack can be deployed in its entirety, or partially depending on your existing monitoring

infrastructure. When the full stack is deployed, the result will be a namespace containing the

following components:

1

PowerDNS Cloud ControlMonitoring

2 Helm Charts

2.1 Charts
The Helm charts which are available to deploy this stack are as follows:

• monitoring-operators - Deploy Grafana & Prometheus operators + accompanying CRDs
• monitoring - Deploy Prometheus & Grafana (including dashboards + datasource) using
above mentioned operators. Also deploys KSM & Prometheus Adapter.

Since the monitoring chart depends on the availability of the operators, the monitoring-

operators chart needs to be installed prior to the monitoring chart if you intend to deploy

Grafana and/or Prometheus.

2

PowerDNS Cloud ControlMonitoring

2.2 Usage

2.2.1 Install Tools
You will need the following software on the machine from which you want to deploy Cloud

Control Monitoring:

• Kubectl (Configured for your target Kubernetes cluster)

• Helm (3.8.0 or newer - https://helm.sh/docs/intro/install/)

2.2.2 Download Helm Charts
Cloud Control Monitoring Helm Charts are available on the Open-Xchange registry, located at:

registry.open-xchange.com.

There are several methods for obtaining Helm Charts using Helm’s CLI, in this chapter we are

using a method that copies the chart locally to your filesystem prior to using it. Any Helm-

supportedmethodwill work, but youwill need to adjust the commands in this guide accordingly

if you wish to utilise a different method.

First step will be to login to the OX registry (replace username & password with your OX registry

credentials):

helm registry login registry.open-xchange.com --username=REGISTRY_USERNAME_HERE \
--password=REGISTRY_PASSWORD_HERE

Once helm has been logged in to the OX registry you can access the Cloud Control Monitoring

Helm Charts. To pull the monitoring Helm Charts and export them to your current working

directory use the following commands:

Pull & unpack Operators chart
helm pull oci://registry.open-xchange.com/cloudcontrol/monitoring-operators \
--version=2.5.2 --untar

Pull & unpack Monitoring chart
helm pull oci://registry.open-xchange.com/cloudcontrol/monitoring \
--version=2.5.2 --untar

2.2.3 Deploying Cloud Control Monitoring
To deploy the monitoring stack without any customization you can use the following steps:

The namespace
CC_MON_NAMESPACE=ccmon
HELM_RELEASE=ccmon

Deploy the monitoring operators & CRDs
helm install $HELM_RELEASE-operators ./monitoring-operators --namespace $CC_MON_NAMESPACE \
--create-namespace

Deploy the monitoring stack
helm install $HELM_RELEASE ./monitoring --namespace $CC_MON_NAMESPACE

3

https://helm.sh/docs/intro/install/

PowerDNS Cloud ControlMonitoring

Note: you can remove --create-namespace if you have an existing namespace to deploy into

2.2.4 Accessing Grafana
You can use kubectl’s port-forwarding to quickly access the Grafana service:

The namespace
CC_MON_NAMESPACE=ccmon

kubectl --namespace=$CC_MON_NAMESPACE port-forward svc/grafana 3000:grafana

You can now visit Grafana at: http://localhost:3000/

When prompted for a username/password, you can login using the username configured in

‘grafana.admin.username’ and based on the ‘grafana.admin.password’ setting a static or dy-

namically generated password. To customize this behaviour, you canmodify the following block

in the helm values:

grafana:
UI Access
admin:
Grafana admin credentials
username: admin
password: some_password

If no password is specified (as in the example above), a random password will be generated

and stored in Secret: grafana-credentials

For a more permanent method of accessing Grafana, refer to the Configuration chapter to con-
figure an Ingress object.

2.2.5 Accessing Prometheus
You can use kubectl’s port-forwarding to quickly access the Prometheus service:

The namespace
CC_MON_NAMESPACE=ccmon

kubectl --namespace=$CC_MON_NAMESPACE port-forward svc/prometheus 9090:web

You can now visit Prometheus at: http://localhost:9090/

For a more permanent method of accessing Prometheus, refer to the Configuration chapter to
configure an Ingress object.

4

http://localhost:3000/
http://localhost:9090/

PowerDNS Cloud ControlMonitoring

3 OpenShift

3.1 OpenShift

3.1.1 Compatibility mode
Cloud Control Monitoring provides an OpenShift compatibility mode which will make sure de-

fault settings adhere to a set compatible with policies present on a default OpenShift cluster.

To enable this compatibility mode, ensure the following is present in your Helm values over-

rides:

global:
openshift:
enabled: true

Note: This should be used for both the ‘Monitoring’ and ‘Monitoring Operators’ Helm charts.
When enabled, Cloud Control Monitoring will be configured with the following:

podSecurityContext

All pods will have a ‘podSecurityContext’ enforcing ‘runAsNonRoot’ and nothing else (UID, GID

& fsGroup will all be auto-assigned at runtime)

To adjust the podSecurityContext configured for pods in the OpenShift compatibility mode, you

can use the following configuration:

global:
openshift:
enabled: true
podSecurityContext:

<Contents of Pod Security Context>

5

PowerDNS Cloud ControlMonitoring

3.1.2 Conflicts with OpenShift-managed components
Many OpenShift clusters have pre-installed components which conflict with the Cloud Control

Monitoring landscape, these likely include:

• Monitoring Operators: Prometheus

• Monitoring: Kube-state-metrics, Prometheus Adapter

If this is the case on your cluster, you can set the enabled flag to false for these components as
documented in the ‘Configuration’ chapter.

6

PowerDNS Cloud ControlMonitoring

4 Prometheus Adapter

4.1 Adapter
Included in the monitoring stack is the Prometheus Adapter (https://github.com/
kubernetes-sigs/prometheus-adapter). This component is used to expose metrics via the Ku-
bernetes API, based on data stored in Prometheus. Exposing these metrics via the Kubernetes

API enables the use of Horizontal Pod Autoscalers in Cloud Control deployments.

7

https://github.com/kubernetes-sigs/prometheus-adapter
https://github.com/kubernetes-sigs/prometheus-adapter

PowerDNS Cloud ControlMonitoring

4.2 Predefined Metrics
By default a few basic metrics are exposed via the adapter, which are configured in the

helm values under the section ‘prometheus-adapter.rules.custom’. The format that these met-

rics must follow is defined here: https://github.com/kubernetes-sigs/prometheus-adapter/
blob/master/docs/config.md

One of the default values available is the amount of queries received by dnsdist, defined as

follows:

- seriesQuery: 'dnsdist_queries'
resources:
overrides:
namespace: {resource: "namespace"}
pod: {resource: "pod"}

name:
matches: "^(.*)"
as: "${1}_per_second"

metricsQuery: 'sum(rate(<<.Series>>{<<.LabelMatchers>>}[1m])) by (<<.GroupBy>>)'

Based on the ‘counter’ type metric ‘dnsdist_queries’ in Prometheus, the rate (ie: the increase

of the metric over a period of time) at which it increases per second is calculated, giving the

amount of queries handled per second over the interval. This makes a metric available via the

Kubernetes API named “dnsdist_queries_per_second”

Another example focuses on a ‘guage’ type metric, exposing the average latency reported for a

dnsdist instance:

- seriesQuery: '{__name__=~"^dnsdist_latency_avg.*$"}'
resources:
overrides:
namespace: {resource: "namespace"}
pod: {resource: "pod"}

name:
matches: ""
as: ""

metricsQuery: 'avg(<<.Series>>{<<.LabelMatchers>>}) by (<<.GroupBy>>)'

Since there are several guages that match the query expression, this leads to the following

metrics being available via the Kubernetes API:

• dnsdist_latency_avg100

• dnsdist_latency_avg1000

• dnsdist_latency_avg10000

• dnsdist_latency_avg1000000

To see all the metrics exposed via the Prometheus Adapter, you can use kubectl:

Note: If you have other sources for metrics available on your cluster this might be a␣
→˓long list
kubectl get --raw /apis/custom.metrics.k8s.io/v1beta1/ | jq

8

https://github.com/kubernetes-sigs/prometheus-adapter/blob/master/docs/config.md
https://github.com/kubernetes-sigs/prometheus-adapter/blob/master/docs/config.md

PowerDNS Cloud ControlMonitoring

4.3 Horizontal Pod Autoscaler
These metrics are made available to allow for using Kubernetes’ Horizontal Pod Autoscaler to

be used to automatically scale up & down deployments. Since the Horizontal Pod Autoscaling

functionality is part of the actual deployment of dnsdist & Recursor, you can find more about

this part of the configuration in the Cloud Control deployment documentation.

9

PowerDNS Cloud ControlMonitoring

5 Grafana Dashboards

5.1 Dashboards
When the ‘monitoring’ chart is used to deploy the stack, several monitoring dashboards will be

provisioned automatically. Currently, this includes the following dashboards:

• PowerDNS dnsdist Detailed insight into running dnsdist instances
• PowerDNS Recursor overview High-level overview of running Recursor instances
• PowerDNS Recursor details Detailed insight into running Recursor instances
• PowerDNS Authoritative details Detailed insight into running Authoritative instances
• PowerDNS Authoritative - Lightningstream Detailed insight into running Light-

ningstream instances

• PowerDNS dstore-dist Detailed insight into running dstore-dist instances
All dashboards have selectors available, which you can use to view details regarding specific

instances or instances within a namespace. These selectors are located top-left of each dash-

board and look as follows:

10

PowerDNS Cloud ControlMonitoring

5.2 Download
If you opt to utilize an existing Grafana installation, you can download the dashboards from the

the Open-Xchange registry, located at: registry.open-xchange.com

The dashboards are stored inside an OCI artifact, so you will have to use a compatible client to

obtain them. Recommended client to use for this is: ORAS (https://oras.land/)

With a CLI such as oras available, you can download the dashboards artifact via:

oras pull registry.open-xchange.com/cloudcontrol/monitoring-dashboards:2.5.2

The result will be a tar archive which contains all the dashboards in JSON format.

11

https://oras.land/

PowerDNS Cloud ControlMonitoring

6 Prometheus Alert Rules

6.1 Alert Rules
When the ‘monitoring’ chart is used to deploy the stack, several prometheus alert rules will be

provisioned automatically. Currently, this includes alert rules for the following:

• PowerDNS Dnsdist
• PowerDNS Recursor
• PowerDNS Authoritative Server

12

PowerDNS Cloud ControlMonitoring

6.2 Download
If you opt to utilize an existing Prometheus installation, you can download the alert rules from

the Open-Xchange registry, located at: registry.open-xchange.com

The alert rules are stored inside an OCI artifact, so you will have to use a compatible client to

obtain them. Recommended client to use for this is: ORAS (https://oras.land/)

With a CLI such as oras available, you can download the alert rules artifact via:

oras pull registry.open-xchange.com/cloudcontrol/monitoring-alertrules:2.5.2

The result will be a tar archive which contains all the alert rules in YAML format.

13

https://oras.land/

PowerDNS Cloud ControlMonitoring

7 Component Reference

7.1 Operators
The following operators are utilized in the monitoring stack:

Prometheus Operator: https://github.com/prometheus-operator/prometheus-operator

Grafana Operator: https://github.com/grafana-operator/grafana-operator

14

https://github.com/prometheus-operator/prometheus-operator
https://github.com/grafana-operator/grafana-operator

PowerDNS Cloud ControlMonitoring

7.2 Components
The following components are utilized in the monitoring stack:

Prometheus: https://prometheus.io/

Grafana: https://grafana.com/oss/grafana/

Prometheus Adapter: https://github.com/kubernetes-sigs/prometheus-adapter

kube-state-metrics: https://github.com/kubernetes/kube-state-metrics

15

https://prometheus.io/
https://grafana.com/oss/grafana/
https://github.com/kubernetes-sigs/prometheus-adapter
https://github.com/kubernetes/kube-state-metrics

PowerDNS Cloud ControlMonitoring

8 Configuration

8.1 Configuration

8.1.1 Enable/Disable components
The helm charts have ‘enabled’ flags available for all major components. The following sections

describe how you can use these to enable/disable components.

Monitoring Operators

This chart installs the following operators & accompanying CRDs:

• Grafana Operator

• Prometheus Operator

By default all components are installed, this can be controlled using the ‘enabled’ settings in the

Helm values:

Grafana Operator
grafana-operator:

Enable the Grafana Operator deployment
enabled: true

Prometheus Operator
prometheus-operator:

Enable the Prometheus Operator deployment
enabled: true

Setting these to ‘false’ will stop the operator (& CRDs) from being deployed.

Monitoring

This chart installs the following components:

• Grafana

• Grafana Dashboards

• Prometheus

• Prometheus Adapter

• kube-state-metrics (KSM)

16

PowerDNS Cloud ControlMonitoring

By default all components are installed, this can be controlled using the ‘enabled’ settings in the

Helm values:

Grafana
grafana:

Enable the Grafana deployment
enabled: true

Create GrafanaDashboard objects for PowerDNS products
dashboards: true

Prometheus
prometheus:

Enable the Prometheus deployment
enabled: true

Prometheus Adapter
prometheus-adapter:

Enable the Prometheus Adapter deployment
enabled: true

kube-state-metrics
kube-state-metrics:

Enable the Kube State Metrics deployment
enabled: true

Setting these to ‘false’ will stop the component from being deployed.

8.1.2 Ingresses & Loadbalancers
The following components have configuration options to add an Ingress and/or Loadbalancer

to expose them outside of the cluster:

• Grafana

• Prometheus

To configure an Ingress and/or Loadbalancer, you can override the ‘ingress’ and ‘service’ config-

uration under the ‘prometheus’ & ‘grafana’ sections in the helm values. The following sections

describe how you can use these to configure them.

Ingress

By default, the ingress is disabled:

Ingress configuration
ingress:

Enable the Ingress
enabled: false

To create an ingress which only serves HTTP, set ‘enabled’ to true and add the hosts on which

you want the ingress to listen.

Example which exposes Prometheus on ‘http://prometheus.example.com’ using the NGINX
Ingress Controller:

17

http://prometheus.example.com

PowerDNS Cloud ControlMonitoring

ingress:
enabled: true
ingressClassName: "nginx"
hosts:
- prometheus.example.com

To create an ingress which serves HTTPS (and has an HTTP->HTTPS redirect), provide a ‘tls’

configuration block.

Example which exposes Prometheus on ‘https://prometheus.example.com’ via the NGINX
Ingress Controller and a pre-existing certificate in a secret named ‘prometheus-cert’:

ingress:
enabled: true
ingressClassName: "nginx"
hosts:
- prometheus.example.com

tls:
- secretName: prometheus-cert
hosts:
- prometheus.example.com

Example which exposes Prometheus on ‘https://prometheus.example.com’ via the NGINX
Ingress Controller and an on-demand certificate provisioned by ‘cert-manager’ in a secret

named ‘prometheus-cert’ (note the additional annotation):

ingress:
enabled: true
ingressClassName: "nginx"
annotations:
cert-manager.io/cluster-issuer: ca-issuer

hosts:
- prometheus.example.com

tls:
- secretName: prometheus-cert
hosts:
- prometheus.example.com

Loadbalancer

By default, services of type ‘ClusterIP’ are created. To expose the service using a loadbalancer,

set the type to ‘LoadBalancer’ and add the necessary additional configuration, based on your

LoadBalancer provider. Example Grafana service configuration in a cluster with MetalLB:

Grafana Service
service:

type: LoadBalancer
annotations:
metallb.universe.tf/address-pool: name_of_pool

loadBalancerIP: 12.34.56.78 # Omit this to have a random IP assigned from the pool
ports:
grafana-http:
port: 3000

For a NodePort service, set the type to ‘NodePort’ and if desirable, specify the nodePort:

18

https://prometheus.example.com
https://prometheus.example.com

PowerDNS Cloud ControlMonitoring

Grafana Service
service:

type: NodePort
ports:
grafana-http:
port: 3000
nodePort: 30003

8.1.3 Private Registries
All images referenced by the monitoring & monitoring-operators charts are available on public

registries. If you intend to run the monitoring stack on a kubernetes cluster which makes use

of a local registry, you can use one or more of the following settings in your helm values to

configure that registry:

Monitoring - global overrides
global:
Override image-related settings for this chart and all subcharts
image:
Override registry for all images
registry: "myregistry.local:8085"

Override repository for all images
repository: "myrepository"

Override pullPolicy for all images
pullPolicy: "IfNotPresent"

Add imagePullSecrets for this chart and all subcharts
imagePullSecrets:
myIPSSecret:
registry: registry.example.com:5000
username: regUsername
password: regPassword
email: admin@registry.example.com

Reference existing Image Pull Secrets for this chart and all subcharts
imagePullSecretsList:
- "my-existing-IPS-secret"

Each setting explained:

global.image.registry
All images will be attempted to be pulled from this registry (format: host:port)

global.image.repository
All images will be attempted to be pulled from this repository, on above configured registry

global.image.pullPolicy
This pull policy will be specified for each image

global.imagePullSecrets
For each entry a Secret will be created and assigned to each Pod

19

PowerDNS Cloud ControlMonitoring

global.imagePullSecretsList
Each pre-existing Secret referenced in this list (by name) will be assigned to each Pod

If you have a need to override the above settings for specific images, you can find the corre-

sponding ‘image:’ configuration blocks in the values file.

8.1.4 Security contexts
By default Cloud Control Monitoring deploys all Pods with a security context which configures

the following items:

securityContext:
fsGroup: 2000
runAsUser: 2000
runAsNonRoot: true
runAsGroup: 1000

Note: Some Pods have different numerical values for fsGroup, runAsUser & runAsGroup as

they have been kept at the defaults provided by open source projects

And all containers have the following applied:

securityContext:
readOnlyRootFilesystem: true
allowPrivilegeEscalation: false
seccompProfile:
type: RuntimeDefault

capabilities:
drop:

- "ALL"

Monitoring Operators - Pod Security Context

To overwrite the Pod securityContext for the operators you can add a podSecurityContext at the
component-level:

Prometheus Operator
prometheus-operator:
podSecurityContext:
runAsUser: 1000953

Grafana Operator
grafana-operator:

podSecurityContext:
runAsUser: 1000953

Since the configuration of this podSecurityContext overwrites the full default Pod securityCon-

text, this leads to the following differences compared to the defaults:

• fsGroup - This is no longer present, so it is dropped from the Pod security context

• runAsUser - This is now set to ‘1000953’

• runAsGroup - This is no longer present, so it is dropped from the Pod security context

20

PowerDNS Cloud ControlMonitoring

• runAsNonRoot - This is no longer present, so it is dropped from the Pod security context

Monitoring Operators - Container Security Context

To overwrite the Container securityContext for the operators you can add a containerSecurity-Context at the component-level:
Prometheus Operator
prometheus-operator:
containerSecurityContext:
seccompProfile:

type: Localhost
localhostProfile: profiles/audit.json

Grafana Operator
grafana-operator:
containerSecurityContext:
seccompProfile:

type: Localhost
localhostProfile: profiles/audit.json

Since the configuration of this containerSecurityContext overwrites the full default Container

securityContext, this leads to the following differences compared to the defaults:

• allowPrivilegeEscalation - This is no longer present, so it is dropped from the Container

security context

• capabilities - This is no longer present, so it is dropped from the Container security context

• readOnlyRootFilesystem - This is no longer present, so it is dropped from the Container

security context

• secCompProfile - This is now set to a Localhost profile configuration

Monitoring - Pod Security Context

To overwrite the Pod securityContext for the monitoring Pods you can add a podSecurityContext
at the component-level:

Grafana
grafana:

podSecurityContext:
runAsUser: 1000953

Prometheus
prometheus:

podSecurityContext:
runAsUser: 1000953

KSM
kube-state-metrics:

podSecurityContext:
runAsUser: 1000953

Prometheus Adapter:

(continues on next page)

21

PowerDNS Cloud ControlMonitoring

(continued from previous page)

prometheus-adapter:
podSecurityContext:
runAsUser: 1000953

Since the configuration of this podSecurityContext overwrites the full default Pod securityCon-

text, this leads to the following differences compared to the defaults:

• fsGroup - This is no longer present, so it is dropped from the Pod security context

• runAsUser - This is now set to ‘1000953’

• runAsGroup - This is no longer present, so it is dropped from the Pod security context

• runAsNonRoot - This is no longer present, so it is dropped from the Pod security context

Monitoring - Container Security Context

To overwrite the Container securityContext for the monitoring Pods you can modify the follow-

ing parameters at the component-level:

Grafana
grafana:

containerSecurityContext:
seccompProfile:
type: Localhost
localhostProfile: profiles/audit.json

Prometheus
prometheus:
containers:
configReloader:
containerSecurityContext:

seccompProfile:
type: Localhost
localhostProfile: profiles/audit.json

prometheus:
containerSecurityContext:

seccompProfile:
type: Localhost
localhostProfile: profiles/audit.json

thanos:
containerSecurityContext:

seccompProfile:
type: Localhost
localhostProfile: profiles/audit.json

KSM
kube-state-metrics:

containerSecurityContext:
seccompProfile:
type: Localhost
localhostProfile: profiles/audit.json

Prometheus Adapter:
prometheus-adapter:

(continues on next page)

22

PowerDNS Cloud ControlMonitoring

(continued from previous page)

containerSecurityContext:
seccompProfile:
type: Localhost
localhostProfile: profiles/audit.json

Note: The Prometheus Pod has multiple containers which can be modified individually

Since the configuration of this containerSecurityContext overwrites the full default Container

securityContext, this leads to the following differences compared to the defaults:

• allowPrivilegeEscalation - This is no longer present, so it is dropped from the Container

security context

• capabilities - This is no longer present, so it is dropped from the Container security context

• readOnlyRootFilesystem - This is no longer present, so it is dropped from the Container

security context

• secCompProfile - This is now set to a Localhost profile configuration

8.1.5 Scheduling controls
You can configure the scheduling of Monitoring components using the standard Kubernetes

controls:

• Affinity

• Node Selector

• Tolerations

Overriding Affinity

Affinity can be configured via the ‘affinity’ override at component-level. This override should

hold a standard Kubernetes configuration, for example:

affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:

nodeSelectorTerms:
- matchExpressions:
- key: topology.kubernetes.io/zone
operator: In
values:
- antarctica-east1
- antarctica-west1

Note: This appends to a default podAntiAffinity which prefers to schedule multiple Pods of the

same type across different nodes

More information regarding the syntax can be found at: https://kubernetes.io/docs/
concepts/scheduling-eviction/assign-pod-node

23

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node

PowerDNS Cloud ControlMonitoring

Overriding Node Selector

Node Selector can be configured via the ‘nodeSelector’ override at component-level. This over-

ride should hold a standard Kubernetes configuration, for example:

nodeSelector:
some_node_label: some-value

More information regarding the syntax can be found at: https://kubernetes.io/docs/tasks/
configure-pod-container/assign-pods-nodes/

Overriding Tolerations

Tolerations can be configured via the ‘tolerations’ override at component-level. This override

should hold a standard Kubernetes configuration, for example:

tolerations:
- key: "example-key"
operator: "Exists"
effect: "NoSchedule"

Note: This appends to the default tolerations which are set by the Kubernetes cluster on which

you deploy.

More information regarding the syntax can be found at: https://kubernetes.io/docs/
concepts/scheduling-eviction/taint-and-toleration/

Monitoring Operators - Pod Scheduling

To overwrite the Pod scheduling configuration for the operators you can use the following

component-level overrides:

For example:

Prometheus Operator
prometheus-operator:
affinity:
{}

nodeSelector:
{}

tolerations:
[]

Grafana Operator
grafana-operator:

affinity:
{}

nodeSelector:
{}

tolerations:
[]

24

https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

PowerDNS Cloud ControlMonitoring

Monitoring - Pod Scheduling

To overwrite the Pod scheduling configuration for the monitoring Pods you can use the follow-

ing component-level overrides:

For example:

Grafana
grafana:

affinity:
{}

nodeSelector:
{}

tolerations:
[]

Prometheus
prometheus:

affinity:
{}

nodeSelector:
{}

tolerations:
[]

KSM
kube-state-metrics:

affinity:
{}

nodeSelector:
{}

tolerations:
[]

Prometheus Adapter:
prometheus-adapter:

affinity:
{}

nodeSelector:
{}

tolerations:
[]

Deploying dashboards in existing Grafana deployment

If you have an existing deployment of Grafana managed by the Grafana Operator, you can

use this chart to deploy only the Grafana dashboards. Additionally, you can add labels to the

dashboards to ensure your Grafana instance sees them as eligible dashboards.

You can use the following configuration to deploy only the dashboards, with a custom label

added to each dashboard:

Grafana
grafana:

enabled: false

(continues on next page)

25

PowerDNS Cloud ControlMonitoring

(continued from previous page)

Create GrafanaDashboard objects for PowerDNS products with custom labels
dashboards: true
dashboardLabels:
monitoring.my.company/grafana_label: some_value

Prometheus
prometheus:

enabled: false

KSM
kube-state-metrics:

enabled: false

Prometheus Adapter:
prometheus-adapter:

enabled: false

8.1.6 Prometheus: Storage
The Prometheus deployment can be configured to use persistent storage:

Prometheus
prometheus:

Storage configuration options
storage:
persistent: true

By default, this will use the cluster’s default storage class to create a 5 GB persistent volume to

store Prometheus data.

To further configure the persistent storage, the following options are available:

• annotations - Annotations to assign to the persistent volume claim

• labels - Labels to assign to the persistent volume claim

• size - Size of the persistent volume

• storageClassName - Storage class to request persistent volume from

For example, you could configure the persistent storage as follows:

Prometheus
prometheus:

Storage configuration options
storage:
persistent: true
size: 10Gi
labels:
label1: some_value
label2: some_other_value

storageClassName: my_storage-class

26

PowerDNS Cloud ControlMonitoring

8.1.7 Prometheus: Thanos
The Prometheus deployment can be configured to include a Thanos sidecar. By default, this is

disabled and no external labels are configured for deduplication:

Prometheus
prometheus:

External Labels
externalLabels: {}

Thanos configuration
thanos:
toggle for thanos sidecar
enabled: false

A simple deployment of the Thanos sidecar can be done via:

Prometheus
prometheus:

External Labels
externalLabels:
datacenter: dc1

Thanos configuration
thanos:
toggle for thanos sidecar
enabled: true

This will cause the Prometheus Pods to have:

• An additional container named ‘thanos-sidecar’

• External label ‘datacenter=dc1’ for data accessed via the Thanos sidecar

• An inbound GRPC Service

• An inbound HTTP Service

To further configure the Thanos sidecar you can refer to the following subchapters.

Inbound GRPC traffic

Inbound GRPC traffic can be configured primarily via the following options:

Prometheus
prometheus:

External Labels
externalLabels:
datacenter: dc1

Thanos configuration
thanos:
toggle for thanos sidecar
enabled: true

Thanos GRPC
grpc:

(continues on next page)

27

PowerDNS Cloud ControlMonitoring

(continued from previous page)

GRPC Service
service:

<< Service config here >>

TLS config
tls:
<< TLS config here >>

Client CA config
clientca:

<< Client CA config here >>

The Service can be configured to allow inbound traffic from outside of the cluster. For example

using a LoadBalancer provided by MetalLB:

Prometheus
prometheus:

External Labels
externalLabels:
datacenter: dc1

Thanos configuration
thanos:
toggle for thanos sidecar
enabled: true

Thanos GRPC
grpc:

GRPC Service
service:
type: LoadBalancer
annotations:
metallb.universe.tf/address-pool: name_of_pool

Inbound TLS can be configured in 2 ways:

• Referring to an existing Secret of type ‘kubernetes.io/tls’

• Providing a ‘key’ and ‘cert’ inline in the values overrides

Example using an existing Secret:

Prometheus
prometheus:

External Labels
externalLabels:
datacenter: dc1

Thanos configuration
thanos:
toggle for thanos sidecar
enabled: true

Thanos GRPC
grpc:

tls:
secret: thanos-cert

28

PowerDNS Cloud ControlMonitoring

This will attempt to use the ‘tls.key’ & ‘tls.crt’ from the ‘thanos-cert’ Secret to enforce TLS on the

inbound GRPC traffic.

Example using inline key & cert:

Prometheus
prometheus:

External Labels
externalLabels:
datacenter: dc1

Thanos configuration
thanos:
toggle for thanos sidecar
enabled: true

Thanos GRPC
grpc:

tls:
key: |-
-----BEGIN RSA PRIVATE KEY-----
KEY_HERE
-----END RSA PRIVATE KEY-----

cert: |-
-----BEGIN CERTIFICATE-----
CERT_1_HERE
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
CERT_2_ HERE
-----END CERTIFICATE-----

This will ensure Helm creates a Secret containing the key & cert, which will then be used to

enforce TLS on the inbound GRPC traffic.

If TLS is enabled, verification of clients using a certificate can also be performed. To do this, the

Thanos sidecar must be configured with a CA against which the clients are verified. Similar to

TLS traffic, this can be configured in two ways:

• Referring to an existing Secret

• Providing a ‘ca’ inline in the values overrides

Example using an existing Secret:

Prometheus
prometheus:

External Labels
externalLabels:
datacenter: dc1

Thanos configuration
thanos:
toggle for thanos sidecar
enabled: true

Thanos GRPC
grpc:

clientca:

(continues on next page)

29

PowerDNS Cloud ControlMonitoring

(continued from previous page)

secret: ca-cert
caKey: ca.crt

This will attempt to use the CA in the ‘ca.crt’ key from the ‘ca-cert’ Secret to enforce client certifi-

cate checks against.

Example using inline ca:

Prometheus
prometheus:

External Labels
externalLabels:
datacenter: dc1

Thanos configuration
thanos:
toggle for thanos sidecar
enabled: true

Thanos GRPC
grpc:

clientca:
ca: |-
-----BEGIN CERTIFICATE-----
CA_CERT_HERE
-----END CERTIFICATE-----

This will ensure Helm creates a Secret containing the CA, which will then be used to enforce

client certificate checks against.

Object Storage

The Thanos sidecar can be configured to write data to object storage using the ‘uploadConfig’

parameter:

Prometheus
prometheus:

External Labels
externalLabels:
datacenter: dc1

Thanos configuration
thanos:
toggle for thanos sidecar
enabled: true

uploadConfig:
<< Object storage config here >>

Object storage can be configured in 2 ways:

• Providing configuration inline in the values overrides

• Referring to an existing Secret containing the object storage configuration

Example using inline configuration:

30

PowerDNS Cloud ControlMonitoring

Prometheus
prometheus:

External Labels
externalLabels:
datacenter: dc1

Thanos configuration
thanos:
toggle for thanos sidecar
enabled: true

uploadConfig:
type: s3
config:
bucket: NAME_OF_BUCKET
endpoint: S3_ENDPOINT
access_key: ACCESS_KEY
secret_key: SECRET_KEY

The above will configure Thanos to store metrics into an S3 bucket. The syntax is identical to

the configuration described in Thanos documentation for the parameter ‘–objstore.config’.

Example using an existing Secret:

Prometheus
prometheus:

External Labels
externalLabels:
datacenter: dc1

Thanos configuration
thanos:
toggle for thanos sidecar
enabled: true

uploadSecret: thanos-objstore-config
uploadSecretKey: objstore

The above will attempt to load the Object Storage config from a key named ‘objstore’ in a secret

named ‘thanos-objstore-config’.

Additional Configuration

The Thanos sidecar can be configured in more detail using the ‘config’ parameter:

Prometheus
prometheus:

External Labels
externalLabels:
datacenter: dc1

Thanos configuration
thanos:
toggle for thanos sidecar
enabled: true

(continues on next page)

31

PowerDNS Cloud ControlMonitoring

(continued from previous page)

config:
{}

Parameters available under ‘config’ are:

• blockSize - This duration controls the size of TSDB blocks produced by Prometheus. (De-

fault is ‘2h’)

• logLevel - Log level for the Thanos sidecar (Default is ‘info’)

• logFormat - Log format for the Thanos sidecar (Default is ‘logfmt’)

32

	Overview
	Cloud Control Monitoring

	Helm Charts
	Charts
	Usage
	Install Tools
	Download Helm Charts
	Deploying Cloud Control Monitoring
	Accessing Grafana
	Accessing Prometheus

	OpenShift
	OpenShift
	Compatibility mode
	Conflicts with OpenShift-managed components

	Prometheus Adapter
	Adapter
	Predefined Metrics
	Horizontal Pod Autoscaler

	Grafana Dashboards
	Dashboards
	Download

	Prometheus Alert Rules
	Alert Rules
	Download

	Component Reference
	Operators
	Components

	Configuration
	Configuration
	Enable/Disable components
	Ingresses & Loadbalancers
	Private Registries
	Security contexts
	Scheduling controls
	Prometheus: Storage
	Prometheus: Thanos

