
PowerDNS Cloud Control

Overview
May 30, 2024
Release 2.6.3

©2024 by Open-Xchange AG and PowerDNS.COM BV. All rights reserved. Open-Xchange, Pow-erDNS, the Open-Xchange logo and PowerDNS logo are trademarks or registered trademarksof Open-Xchange AG. All other company and/or product names may be trademarks or regis-tered trademarks of their owners. Information contained in this document is subject to changewithout notice.

PowerDNS Cloud ControlOverview

Contents
1 Cloud Control 11.1 Simple deployment - Recursor . 11.2 Simple deployment - Auth . 21.3 Complex deployment . 21.4 Rules & Actions . 31.5 DNSdist with co-hosted Recursors . 31.6 DNSdist with DoH, DoH3, DoQ and/or DoT listeners 31.7 ZoneControl deployment . 41.8 Dstore-dist . 41.9 Ixfrdist . 5
2 Cloud Control on Kubernetes 72.1 Auth . 72.1.1 Auth agent . 82.2 DNSdist . 82.2.1 DNSdist agent . 92.3 Recursor . 102.3.1 Recursor agent . 112.4 Resolver . 112.5 Ruleset . 122.6 ZoneControl . 122.6.1 ZoneControl Syncer . 13
3 Cloud Control on OpenShift 143.1 podSecurityContext . 14
4 Helm Charts 154.1 Helm Chart: powerdns-crds . 154.2 Helm Chart: powerdns . 154.3 Helm Chart: powerdns-operators . 15
5 Getting Started 175.1 Install Tools . 175.2 Download Helm Charts . 175.3 Install/Upgrade CloudControl CRDs . 185.4 Install/Upgrade CloudControl . 195.4.1 Registry Credentials . 195.4.2 Cluster Networking . 195.4.3 Deploying Recursor . 215.4.4 Adding DNSdist . 225.4.5 Adding an external Resolver . 235.4.6 Adding a DNSdist rule . 25

i

PowerDNS Cloud ControlOverview

5.4.7 Using DNSdist rules to route traffic . 265.4.8 Separating config into multiple files . 285.4.9 Exposing dnsdist . 295.4.10 Deploying ZoneControl . 295.4.11 Deploying Cloud Control API . 30
6 Advanced Examples 326.1 DNSdist: DoH . 326.2 DNSdist: DoH3 . 336.3 DNSdist: DoQ . 346.4 DNSdist: DoT . 346.5 DNSdist: Co-hosted Recursor . 356.6 DNSdist: Lua script . 366.6.1 Lua script from file . 376.7 Recursor: Lua script & config . 376.7.1 Lua script and config from file . 386.8 Recursor: Forwarding zones . 396.8.1 Automatically learning forward zones from Auth 406.8.2 Filtering learned zones from Auth . 406.8.3 Forwarding zones to another Recursor . 416.8.4 Forwarding to external resolvers and/or authoritative nameservers 426.8.5 Forwarding & DNSSEC . 436.8.6 Priority . 436.9 Multi-homed pods . 446.9.1 Configuring multi-homed Recursor pods 456.9.2 Configuring multi-homed DNSdist with co-hosted Recursor pods 486.10 Auth: Backends . 496.10.1 Postgres . 496.10.2 MySQL . 506.10.3 GeoIP . 526.10.4 LMDB with LightningStream . 526.11 Auth: ixfrdist . 566.11.1 ixfrdist with domains from a ConfigMap . 576.11.2 ixfrdist with domains learned from Auth 586.12 Dstore-dist: Recursor . 586.13 Dstore-dist: DNSdist . 596.14 Dstore-dist: Standalone . 61
7 Security 637.1 Verification of OCI artifacts . 63
8 Troubleshooting 648.1 Accessing DNSdist console . 648.2 Pod Events . 65
9 Compatibility 669.1 Kubernetes . 669.1.1 Validated releases . 669.2 OpenShift . 669.2.1 Validated releases . 66

ii

PowerDNS Cloud ControlOverview

1 Cloud Control
Cloud Control facilitates orchestration, management & monitoring of PowerDNS products inKubernetes deployments. PowerDNS products supported in this version are:

• PowerDNS DNSdist - A DNS, DoS and abuse-aware loadbalancer that brings out the bestpossible performance in any DNS deployment.
• PowerDNS Recursor - A high-performing, low latency DNS resolver.
• PowerDNS Authoritative Server - A versatile authoritative server for hosting domainnames.
• PowerDNS ZoneControl - A graphical web-based interface for managing domains on thePowerDNS Authoritative Server.

In additions, several PowerDNS Add-ons are available to deploy alongside above products:
• PowerDNS dstore-dist - Component which can send protobuf messages to different des-tinations and acts as a distributor of the protobuf messages generated by PowerDNSRecursor and DNSdist
• PowerDNS ixfrdist - Component which transfers zones from an authoritative server andre-serves these zones over AXFR and IXFR

1.1 Simple deployment - Recursor
Cloud Control can be used to roll out a set of Recursor instances, with a set of DNSdists infront. In the below diagram you can see a set of DNSdist instances, with a default pool sendingall traffic to a set of Recursor instances:

1

PowerDNS Cloud ControlOverview

1.2 Simple deployment - Auth
Cloud Control can be used to roll out a set of Auth instances, with a set of DNSdists in front. Inthe below diagram you can see a set of Auth instances, with a default pool sending all traffic toa set of Auth instances:

1.3 Complex deployment
In a more complex deployment you can deploy both Recursor & Auth instances, having DNS-dist using multiple pools to send traffic to the different instances based on the incomingqueries/traffic. In the below example you see a setup where both Recursor & Auth are de-ployed, with DNSdist using rules to send some traffic to Auth, while defaulting to sendingqueries to Recursor. The Recursor > Auth arrow signifies the use of forward zones, which in-structs the Recursor to forward queries for certain zones to Auth.

2

PowerDNS Cloud ControlOverview

1.4 Rules & Actions
Deciding which traffic to send to each pool is handled by DNSdist’s packet policies, which offersa mechanism to define rules and corresponding actions. In the context of the above diagram,such rules & actions could be:
Rule Action‘QPS’ of requests from the sender has exceeded a certainvalue Answer request with ‘RE-FUSED’‘Opcode’ of request is ‘Notify’ let Auth pool handle the re-quest‘Qtype’ of request is ‘AXFR’ let Auth pool handle the re-quest

Note: By default, all requests will be handled by the ‘Default Pool’

1.5 DNSdist with co-hosted Recursors
In a high load environment, the overhead on Kubernetes network components from the DNS-dist to Recursor traffic can potentially become a bottleneck and/or lead to unacceptable latency.For these scenarios it is possible to have 1 or more Recursor instances running within the samePod as DNSdist. Such a deployment would look as follows:

1.6 DNSdist with DoH, DoH3, DoQ and/or DoT listeners
Inbound traffic to DNSdist is supported not only via the standard UDP & TCP over port 53(Do53), but also via DoH, DoH3, DoQ and DoT. When configured, you can have a deploymentthat looks as follows:

3

PowerDNS Cloud ControlOverview

1.7 ZoneControl deployment
Cloud Control can be used to roll out a set of ZoneControl instances and configure the end-points of Auth instances that it should be able to manage. In the below diagram you can seea set of ZoneControl instances, configured to manage 2 sets of Auth instances, one within thesame Cloud Control deployment and another in a separate deployment:

1.8 Dstore-dist
To enable the distribution and filtering of protobuf messages generated by DNSdist and/orRecursor, dstore-dist can run as a sidecar in DNSdist and Recursor. In the below diagram youcan see a set of DNSdist instances with a dstore-dist sidecar configured to distribute messagesto a Kafka deployment.

When deployed as a sidecar in a Recursor pod with a Kafka destination:

4

PowerDNS Cloud ControlOverview

Alternatively, dstore-dist can also be deployed as a standalone set of Pods, to perform ad-ditional aggregation, filtering and distribution of protobuf messages sent by multiple sets ofDNSdist and/or Recursor pods:

1.9 Ixfrdist
Ixfrdist can be enabled as a sidecar in a set of Auth pods and exposed via DNSdist. A basicdeployment of Auth with ixfrdist is shown in the below diagram:

5

PowerDNS Cloud ControlOverview

6

PowerDNS Cloud ControlOverview

2 Cloud Control on Kubernetes
Cloud Control provides a Helm Chart which allows for the definition & configuration of thefollowing:

• auth - Definition of a set of PowerDNS Authoritative Server instances and correspondingconfiguration
• dnsdist - Definition of a set of PowerDNS DNSdist instances and corresponding configu-ration
• recursor - Definition of a set of PowerDNS Recursor instances and corresponding config-uration
• resolver - Definition of a set of external resolver endpoints
• ruleset - Definition of a set of rules which can be applied to DNSdist instances
• zonecontrol - Definition of a set of PowerDNS ZoneControl instances and correspondingconfiguration

The following sections discuss each in more detail.

2.1 Auth
For each auth defined in the input to the Helm Chart, objects of the following types (aka kind inKubernetes terminology) will be created in Kubernetes:
Kind API Group DescriptionAuth cloudcontrol.

powerdns.
com

Object which holds configuration of the Auth instances

Deployment core Deployment of Auth pods (including ReplicaSet)Service core Service which can be discovered by DNSdist & Recursoragents to direct traffic to the Auth pods
When an auth instance is configured using the Helm Chart, it will deploy the following to Kuber-netes:

7

PowerDNS Cloud ControlOverview

As the diagram shows an Auth pod will consist of 2 containers + 1 init container:
• auth-init - Prepares configuration for Auth.
• auth - Container running PowerDNS Authoritative Server.
• agent - Contains an agent that watches several kinds of objects in Kubernetes within thenamespace. If any watched objects are created/updated/removed, the agent will sync anycorresponding configuration items to the running Auth instance. The agent is describedin detail in the next chapter.

2.1.1 Auth agent
The Auth agent is responsible for keeping the configuration of the running Auth process in syncwith the desired configuration. If any configuration changes are needed, the agent will attemptto synchronize them without restarting the Auth process.
Items which are watched by the agent are:
Kind PurposeAuth The object which contains the configuration details for an Auth deployment.If any updates are detected the agent will attempt to update the configura-tion of Auth without having to restart it.Pod The agent watches the pod which it is a part of. Particularly the statuses ofeach container inside the pod are observed, to ensure the agent can syn-chronize an Auth instance again if it’s container was recycled for any reason.GeoIP zone-files The agent watches for changes in the GeoIP zonefiles that can be config-ured for the GeoIP backend using the domains attribute. If any changes aredetected the agent will instruct Auth to reload the zonefiles.

2.2 DNSdist
For each dnsdist defined in the input to the Helm Chart, objects of the following types (kind inKubernetes) will be created in Kubernetes:

8

PowerDNS Cloud ControlOverview

Kind API Group DescriptionDNSDist cloudcontrol.
powerdns.com

Object which holds configuration of the DNSdist instances
Deployment core Deployment of DNSdist pods (including ReplicaSet)Service core Service which can be used to direct traffic to the DNSdistpods
When a dnsdist instance is configured using the Helm Chart, it will deploy the following toKubernetes:

As the diagram shows a DNSdist pod will consist of 3 containers + 1 init container:
• dnsdist-init - Prepares configuration for dnsdist.
• dnsdist - Container running PowerDNS DNSdist.
• rpc-server - Runs an API that is responsible for handling JSON messages over HTTP fromthe agent and forwarding them to dnsdist.
• agent - Contains an agent that watches several kinds of objects in Kubernetes within thenamespace. If any watched objects are created/updated/removed, the agent will syncany corresponding configuration items to the running dnsdist instance. The agent is de-scribed in detail in the next chapter.

2.2.1 DNSdist agent
The DNSdist agent is responsible for keeping the configuration of the running DNSdist processin sync with the desired configuration. If any configuration changes are needed, the agentwill attempt to synchronize them without restarting the DNSdist process. These configurationchanges range from performance parameters defined in the DNSDist object to adjusting serverpools according to changes observed in Recursor, Auth & Resolver deployments.
Items which are watched by the agent are:

9

PowerDNS Cloud ControlOverview

Kind PurposeDNSDist The object which contains the configuration details for a DNSdist deploy-ment. If any updates are detected the agent will attempt to update the con-figuration of DNSdist without having to restart it.Pod The agent watches the pod which it is a part of. Particularly the statuses ofeach container inside the pod are observed, to ensure the agent can syn-chronize a DNSdist instance again if it’s container was recycled for any rea-son.DNSDistRule Any rule objects which match the RuleSelector on the DNSDist object arewatched and synchronized to the DNSdist process if needed. Any new rulesthat match the RuleSelector are also applied as soon as they are observedby the agent.Service &Endpoints The agent watches for changes in the Endpoints of any Service objects whichmatch the ServiceSelector of the DNSDist object. This allows the agent todiscover the servers that should be part of the pool(s) in DNSdist and worksfor Recursor, Auth & Resolver deployments.

2.3 Recursor
For each recursor defined in the input to the Helm Chart, objects of the following types (aka
kind in Kubernetes terminology) will be created in Kubernetes:
Kind API Group DescriptionRecursor cloudcontrol.

powerdns.
com

Object which holds configuration of the Recursor instances

Deployment core Deployment of Recursor pods (including ReplicaSet)Service core Service which can be discovered by DNSdist agents to directtraffic to the Recursor pods
When a recursor instance is configured using the Helm Chart, it will deploy the following toKubernetes:

As the diagram shows a Recursor pod will consist of 2 containers + 1 init container:
• recursor-init - Prepares configuration for Recursor.
• recursor - Container running PowerDNS Recursor.

10

PowerDNS Cloud ControlOverview

• agent - Contains an agent that watches several kinds of objects in Kubernetes within thenamespace. If any watched objects are created/updated/removed, the agent will sync cor-responding configuration items to the running Recursor instance. The agent is describedin detail in the next chapter.

2.3.1 Recursor agent
The Recursor agent is responsible for keeping the configuration of the running Recursor pro-cess in sync with the desired configuration. If any configuration changes are needed, the agentwill attempt to synchronize them without restarting the Recursor process.
Items which are watched by the agent are:
Kind PurposeRecursor The object which contains the configuration details for a Recursor deploy-ment. If any updates are detected the agent will attempt to update the con-figuration of Recursor without having to restart it.Pod The agent watches the pod which it is a part of. Particularly the statuses ofeach container inside the pod are observed, to ensure the agent can syn-chronize a Recursor instance again if it’s container was recycled for any rea-son.Service &Endpoints The agent watches for changes in the Endpoints of any Service objects whichmatch the ServiceSelector of the Recursor object. This allows the agent todiscover the endpoints that should be part of the forward zones in Recursor.

2.4 Resolver
For each resolver defined in the input to the Helm Chart, objects of the following types (aka
kind in Kubernetes terminology) will be created in Kubernetes:
Kind API Group DescriptionEndpoints core Object that holds each IP:port combination defined for theresolverService core Service which can be discovered by DNSdist & Recursoragents to direct traffic to the resolver’s endpoints
When a resolver instance is configured using the Helm Chart, it will deploy the following toKubernetes:

11

PowerDNS Cloud ControlOverview

2.5 Ruleset
For each ruleset defined in the input to the Helm Chart, objects of the following types (aka
kind in Kubernetes terminology) will be created in Kubernetes:
Kind API Group DescriptionDNSDistRule cloudcontrol.

powerdns.com
Object which holds configuration of a set of rules whichcan be discovered by DNSdist agents and applied to DNS-dist without restarting

2.6 ZoneControl
For each zonecontrol defined in the input to the Helm Chart, objects of the following types (aka
kind in Kubernetes terminology) will be created in Kubernetes:
Kind API Group DescriptionZoneControl cloudcontrol.

powerdns.
com

Object which holds configuration of the ZoneControl in-stances
Deployment core Deployment of ZoneControl pods (including ReplicaSet)Service core Service which can be used to expose ZoneControl instancesIngress networking.

k8s.io
Ingress which can be used to expose ZoneControl instancesoutside of the cluster via HTTP(S)

When a zonecontrol instance is configured using the Helm Chart, it will deploy the following toKubernetes:

As the diagram shows a ZoneControl instance will consist of a ZoneControl deployment with 1container + 1 init container and a ZoneControl Syncer deployment. The ZoneControl Deploy-ment contains the GUI and can have multiple replicas, while the ZoneControl Syncer deploy-ment has a single replica and is used to synchronise configuration changes to the ZoneControlinstances.
• zonecontrol-init - Prepares configuration for ZoneControl.
• zonecontrol - Container running PowerDNS ZoneControl.
• syncer - Contains an operator that watches ZoneControl objects in Kubernetes within thenamespace. If any watched objects are updated, the syncer will synchronise any corre-sponding configuration items to the running ZoneControl instances.

12

PowerDNS Cloud ControlOverview

2.6.1 ZoneControl Syncer
The ZoneControl Syncer agent is responsible for keeping the configuration of the runningZoneControl processes in sync with the desired configuration. If any configuration changesare needed, the syncer will attempt to synchronize them without restarting the ZoneControlprocess.
Items which are watched by the syncer are:
Kind PurposeZoneControl The object which contains the configuration details for a ZoneControl de-ployment. If any updates are detected the syncer will attempt to update theconfiguration of ZoneControl without having to restart it.

13

PowerDNS Cloud ControlOverview

3 Cloud Control on OpenShift
Cloud Control provides an OpenShift compatibility mode which will make sure default settingsadhere to a set compatible with policies present on a default OpenShift cluster.
To enable this compatibility mode, ensure the following is present in your Helm values over-rides:
global:
openshift:
enabled: true

When enabled, Cloud Control will have a minimal set of configuration objects adjusted in termsof default settings:
• Default Security Context on Pod objects will no longer set these parameters: ‘fsGroup’,‘runAsUser’ and ‘runAsGroup’

For each affected set of configuration items in the above list, you can still apply your own cus-tomisations. Below sections explain how you can modify these when you are running withOpenShift compatibility mode enabled.

3.1 podSecurityContext
By default, all pods will have a ‘podSecurityContext’ enforcing ‘runAsNonRoot’ and nothing elsein OpenShift compatibility mode.
To adjust the podSecurityContext configured for pods in the OpenShift compatibility mode, youcan use the following configuration:
global:
openshift:
enabled: true
podSecurityContext:

<Contents of Pod Security Context>

14

PowerDNS Cloud ControlOverview

4 Helm Charts
CloudControl has several Helm Charts available to manage & deploy PowerDNS environmentsto Kubernetes. The main charts are as follows:

• powerdns-crds: Chart to install/upgrade the CloudControl CRDs
• powerdns: Chart to install/upgrade CloudControl deployments
• powerdns-operators: Chart that allows for installation of optional operators

4.1 Helm Chart: powerdns-crds
This chart is used to deploy & upgrade the CRDs used by PowerDNS CloudControl deployments.Having these CRDs deployed to the cluster is a prerequisite to being able to install an environ-ment using the powerdns Helm chart.
Scope of objects: cluster-scoped, requires cluster privileges on CRD objects.

4.2 Helm Chart: powerdns
This chart is used to deploy & upgrade the PowerDNS CloudControl deployments.
Scope of objects: namespace-scoped, does not require any cluster privileges.

4.3 Helm Chart: powerdns-operators
This optional chart is used to deploy auxiliary Kubernetes Operators that may be used to easilydeploy additional components to support CloudControl PowerDNS deployments. Due to thecomplexity of persistent storage in a Kubernetes environment we recommend you leverageany existing facilities you may have to provide the services offered by this chart instead of usingthis chart to deploy them.
Currently contains Operators for:

• Postgres: Allows for automated creation of Postgres databases, potentially used by Auth& ZoneControl deployments.
Scope of objects: cluster-scoped & namespace-scoped, requires cluster privileges on CRD, Clus-
terRole and ClusterRoleBinding objects.

15

PowerDNS Cloud ControlOverview

OpenShift: The Postgres Operator is based on an opensource project, which is currently notcompatible with OpenShift. OpenShift users will be unable to use this Operator and will needto provision their own Postgres databases.

16

PowerDNS Cloud ControlOverview

5 Getting Started
5.1 Install Tools
You will need the following software on the machine from which you want to deploy CloudCon-trol:

• Kubectl (Configured for your target Kubernetes cluster)
• Helm (3.8.0 or newer - https://helm.sh/docs/intro/install/)

5.2 Download Helm Charts
CloudControl Helm Charts are available on the Open-Xchange registry, located at:registry.open-xchange.com.
There are several methods for obtaining Helm Charts using Helm’s CLI, in this chapter we areusing a method that copies the chart locally to your filesystem prior to using it. Any Helm-supportedmethodwill work, but youwill need to adjust the commands in this guide accordinglyif you wish to utilise a different method.
First step will be to login to the OX registry (replace username & password with your OX registrycredentials):
helm registry login registry.open-xchange.com --username=REGISTRY_USERNAME_HERE \
--password=REGISTRY_PASSWORD_HERE

Once helm has been logged in to the OX registry you can access the CloudControl Helm Charts.To pull the powerdns Helm Charts and unpack them to your current working directory use thefollowing commands:
Pull & unpack CRDs chart
helm pull oci://registry.open-xchange.com/cloudcontrol/powerdns-crds \
--version=2.6.3 --untar

Pull & unpack Powerdns chart
helm pull oci://registry.open-xchange.com/cloudcontrol/powerdns \
--version=2.6.3 --untar

Pull & unpack Operators chart (optional)
helm pull oci://registry.open-xchange.com/cloudcontrol/powerdns-operators \
--version=2.6.3 --untar

17

https://helm.sh/docs/intro/install/

PowerDNS Cloud ControlOverview

5.3 Install/Upgrade CloudControl CRDs
The CloudControl CRDs can be installed or upgraded using the powerdns-crdsHelm Chart. Whilethe chart only deploys cluster-scoped objects (CRDs), you need to provide a namespace to allowHelm to store the relevant information about this deployment. This ensures you can easilyupgrade to a newer version in the future.
To install the CRDs with a Helm release name of ‘pdnscrds’ stored in a namespace ‘pdnscrds’:
helm install pdnscrds ./powerdns-crds --namespace pdnscrds

Note: you can add --create-namespace if the namespace does not exist yet and you haveprivileges to create it
Using kubectl you should now be able to see the corresponding Kubernetes objects created:
Kubectl command to show CRD objects (filtered for 'cloudcontrol')
kubectl get crd | grep cloudcontrol

Kubectl output
dnsdistrules.cloudcontrol.powerdns.com <timestamp of creation>
zonecontrols.cloudcontrol.powerdns.com <timestamp of creation>
auths.cloudcontrol.powerdns.com <timestamp of creation>
recursors.cloudcontrol.powerdns.com <timestamp of creation>
dnsdists.cloudcontrol.powerdns.com <timestamp of creation>

Result should be a list of CRDs within the cloudcontrol.powerdns.com group as shown above.
To upgrade the CRDs, you can use the helm upgrade command. For example:
helm upgrade pdnscrds ./powerdns-crds --namespace pdnscrds

Note: Since the Helm upgrade command needs to have awareness of the previous in-stall/upgrade, it is crucial to specify the same release and namespace (both ‘pdnscrds’ in thisexample). If you try to upgrade but do not specify the existing release and namespace, theupgrade of the CRDs will fail (if it does fail, Helm will tell you and the old CRDs will remainuntouched)

18

PowerDNS Cloud ControlOverview

5.4 Install/Upgrade CloudControl
The CloudControl Helm Chart has a large amount of configurable options, which are detailed inthe reference documentation. In the next few chapters themost important parts are discussed.

5.4.1 Registry Credentials
Since the CloudControl images are in a protected repository there is a requirement to supplycredentials. There are several ways to configure these, for the remainder of this guide we willuse the method which allows you to specify them directly in the override values:
registrySecrets:
registry: registry.open-xchange.com
username: REGISTRY_USERNAME_HERE
password: REGISTRY_PASSWORD_HERE
email: admin@registry.open-xchange.com

Make sure the username & password match your credentials for the OX registry.
Note: Alternatively, you can make use of the methods described in the reference guide under‘Private Registries’

5.4.2 Cluster Networking
To be able to support Kubernetes clusters with IPv4, IPv6 or dual stack (IPv4 & IPv6) configu-rations, it is required to ensure the ‘ipFamily’ configuration in the helm values matches yourcluster. The ‘ipFamily’ section contains the following parameters:

• ipv4: Whether or not your cluster has IPv4 enabled (Default: true)
• ipv6: Whether or not your cluster has IPv6 enabled (Default: false)
• families: Preference of IP families on your cluster, if it is a dualstack cluster

To ensure your deployment is correctly configured, you need to provide one of the 4 possiblevariations:

IPv4 only (default)
Networking configuration
ipFamily:
ipv4: true
ipv6: false
families:
- "IPv4"
- "IPv6"

Note: ‘families’ is ignored in this configuration. It is only used in a dualstack setup.

19

PowerDNS Cloud ControlOverview

IPv6 only
Networking configuration
ipFamily:
ipv4: false
ipv6: true
families:
- "IPv4"
- "IPv6"

Note: ‘families’ is ignored in this configuration. It is only used in a dualstack setup.

Dualstack - IPv4 primary
If you are running a dualstack cluster, you can check any Pod to see if your cluster has a pref-erence for IPv4 or IPv6. Your pods will have a ‘podIP’ and 2 values for ‘podIPs’. If the ‘podIP’ isan IPv4 address as shown in the example below, then you are running a cluster with IPv4 asprimary:
podIP: 172.17.183.4 # IPv4
podIPs:
- ip: 172.17.183.4 # IPv4
- ip: fd43:128b:8658:b73b:3eb7:2e30:8815:3f6 # IPv6

Configuration for dualstack with IPv4 primary:
Networking configuration
ipFamily:
ipv4: true
ipv6: true
families:
- "IPv4" # IPv4 is primary
- "IPv6"

Dualstack - IPv6 primary
If you are running a dualstack cluster, you can check any Pod to see if your cluster has a pref-erence for IPv4 or IPv6. Your pods will have a ‘podIP’ and 2 values for ‘podIPs’. If the ‘podIP’ isan IPv6 address as shown in the example below, then you are running a cluster with IPv6 asprimary:
podIP: fd43:128b:8658:b73b:3eb7:2e30:8815:3f6 # IPv6
podIPs:
- ip: fd43:128b:8658:b73b:3eb7:2e30:8815:3f6 # IPv6
- ip: 172.17.183.4 # IPv4

Configuration for dualstack with IPv6 primary:
Networking configuration
ipFamily:
ipv4: true
ipv6: true
families:

(continues on next page)

20

PowerDNS Cloud ControlOverview

(continued from previous page)
- "IPv6" # IPv6 is primary
- "IPv4"

For the remainder of the guide we will assume the cluster is running on the ‘IPv4 only’ scenario.If your cluster has a different setup please make sure you substitute accordingly.

5.4.3 Deploying Recursor
To deploy a set of Recursor instances, include an entry in the YAML file under the ‘recursors’parent, such as:
recursors:
myrecursor:
replicas: 3

registrySecrets:
registry: registry.open-xchange.com
username: REGISTRY_USERNAME_HERE
password: REGISTRY_PASSWORD_HERE
email: admin@registry.open-xchange.com

ipFamily:
ipv4: true
ipv6: false
families:
- "IPv4"
- "IPv6"

The above file will create a set of Recursor instances named ‘myrecursor’ and the Deploymentin Kubernetes will have a ReplicaSet with replicas=3. If you save this file as ‘values.yaml’ in yourcurrent working directory you should be able to use the Helm Chart to create the Recursorinstances:
The namespace
CC_NAMESPACE=my-namespace
HELM_RELEASE=ccdemo

helm install $HELM_RELEASE ./powerdns --namespace $CC_NAMESPACE --create-namespace \
--values ./values.yaml

Note: you can remove --create-namespace if you have an existing namespace to deploy into
Using kubectl you should now be able to see the corresponding Kubernetes objects created:
Kubectl command to show all objects in a namespace
kubectl get all --namespace=$CC_NAMESPACE

Kubectl output
NAME READY STATUS RESTARTS AGE
pod/myrecursor-589559675d-d57jk 1/1 Running 0 3m12s
pod/myrecursor-589559675d-m779s 1/1 Running 0 3m12s
pod/myrecursor-589559675d-xxrvc 1/1 Running 0 3m12s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

(continues on next page)

21

PowerDNS Cloud ControlOverview

(continued from previous page)
service/recursor-myrecursor ClusterIP None <none> 5353/TCP 3m12s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/myrecursor 3/3 3 3 3m12s

NAME DESIRED CURRENT READY AGE
replicaset.apps/myrecursor-589559675d 3 3 3 3m12

Result should be a deployment + replicaset + service + a number of pods equal to the ‘replicas’value from the values.yaml file.

5.4.4 Adding DNSdist
To add a set of DNSdist instances to our deployment, include an entry in the YAML file underthe ‘dnsdists’ parent, such as:
dnsdists:

mydnsdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

packetcache:
maxEntries: 200000

recursors:
myrecursor:
replicas: 3

registrySecrets:
registry: registry.open-xchange.com
username: REGISTRY_USERNAME_HERE
password: REGISTRY_PASSWORD_HERE
email: admin@registry.open-xchange.com

ipFamily:
ipv4: true
ipv6: false
families:
- "IPv4"
- "IPv6"

The above will add a set of DNSdist instances named ‘mydnsdist’ and the Deployment in Kuber-netes will have a ReplicaSet with replicas=2. The ‘pools’ configuration instruct DNSdist’s agentto make sure all instances of ‘myrecursor’ are added to the default pool in DNSdist. The ‘pack-etcache’ with ‘maxEntries’ configuration ensures the cache for this pool will be able to hold200000 entries.
Save the values.yaml file and upgrade the environment using the Helm Chart:
The namespace
CC_NAMESPACE=my-namespace

Helm release name
HELM_RELEASE=ccdemo

(continues on next page)

22

PowerDNS Cloud ControlOverview

(continued from previous page)
helm upgrade $HELM_RELEASE ./powerdns --namespace $CC_NAMESPACE --values=./values.yaml

Using kubectl you should now be able to see the corresponding Kubernetes objects created forDNSdist:
Kubectl command to show all objects in a namespace
kubectl get all --namespace=$CC_NAMESPACE

Kubectl output
NAME READY STATUS RESTARTS AGE
pod/mydnsdist-775cbf55d9-qjtks 3/3 Running 1 15m
pod/mydnsdist-775cbf55d9-t8fbk 3/3 Running 1 15m
pod/myrecursor-589559675d-d57jk 1/1 Running 0 27m
pod/myrecursor-589559675d-m779s 1/1 Running 0 27m
pod/myrecursor-589559675d-xxrvc 1/1 Running 0 27m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/recursor-myrecursor ClusterIP None <none> 5353/TCP 27m

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/mydnsdist 2/2 2 2 15m
deployment.apps/myrecursor 3/3 3 3 27m

NAME DESIRED CURRENT READY AGE
replicaset.apps/mydnsdist-775cbf55d9 2 2 2 15m
replicaset.apps/myrecursor-589559675d 3 3 3 27m

5.4.5 Adding an external Resolver
To add a set of external resolvers to our deployment, include an entry in the YAML file underthe ‘resolvers’ parent, such as:
dnsdists:
mydnsdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor
- group: myresolver

packetcache:
maxEntries: 200000

recursors:
myrecursor:
replicas: 3

resolvers:
myresolver:
ips:
- 9.9.9.9
- 149.112.112.112

registrySecrets:
registry: registry.open-xchange.com
username: REGISTRY_USERNAME_HERE

(continues on next page)

23

PowerDNS Cloud ControlOverview

(continued from previous page)
password: REGISTRY_PASSWORD_HERE
email: admin@registry.open-xchange.com

ipFamily:
ipv4: true
ipv6: false
families:
- "IPv4"
- "IPv6"

The above will add a Service named ‘myresolver’ in Kubernetes which will have an Endpointsobject containing the IP addresses (in this example the Quad9 IPs). By adding ‘myresolver’to the ‘default’ pool in DNSdist, traffic will be loadbalanced between the Recursor & resolverendpoints (not a realistic scenario, which will be tackled in the next chapter).
Save the values.yaml file and upgrade the environment using the Helm Chart:
The namespace
CC_NAMESPACE=my-namespace

Helm release name
HELM_RELEASE=ccdemo

helm upgrade $HELM_RELEASE ./powerdns --namespace $CC_NAMESPACE --values=./values.yaml

Using kubectl you should now be able to see the corresponding Kubernetes objects created forresolver (the service object named ‘myresolver’):
Kubectl command to show all objects in a namespace
kubectl get all --namespace=$CC_NAMESPACE

Kubectl output
NAME READY STATUS RESTARTS AGE
pod/mydnsdist-775cbf55d9-qwvrq 3/3 Running 0 22s
pod/mydnsdist-775cbf55d9-swz2w 3/3 Running 0 22s
pod/myrecursor-589559675d-5sqmg 1/1 Running 0 22s
pod/myrecursor-589559675d-cv6bl 1/1 Running 0 22s
pod/myrecursor-589559675d-sptfh 1/1 Running 0 22s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/recursor-myrecursor ClusterIP None <none> 5353/TCP 22s
service/resolver-myresolver ClusterIP None <none> 53/TCP 22s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/mydnsdist 2/2 2 2 22s
deployment.apps/myrecursor 3/3 3 3 22s

NAME DESIRED CURRENT READY AGE
replicaset.apps/mydnsdist-775cbf55d9 2 2 2 22s
replicaset.apps/myrecursor-589559675d 3 3 3 22s

24

PowerDNS Cloud ControlOverview

5.4.6 Adding a DNSdist rule
To add more logic to DNSdist instances you can create rules under the ‘rulesets’ parent andassigning them to DNSdist objects, such as:
dnsdists:
mydnsdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor
- group: myresolver

packetcache:
maxEntries: 200000

rulegroups:
- traffic-filters

recursors:
myrecursor:
replicas: 3

resolvers:
myresolver:
ips:
- 9.9.9.9
- 149.112.112.112

rulesets:
block-traffic-ruleset:
group: traffic-filters
type: DNSDistRule
priority: 100
rules:
- name: Block ANY

combinator: AND
selectors:
- QType: ANY

action:
RCode:
rcode: "REFUSED"

registrySecrets:
registry: registry.open-xchange.com
username: REGISTRY_USERNAME_HERE
password: REGISTRY_PASSWORD_HERE
email: admin@registry.open-xchange.com

ipFamily:
ipv4: true
ipv6: false
families:
- "IPv4"
- "IPv6"

The above will add a DNSDistRule object named ‘block-traffic-ruleset’ in Kubernetes. This rulewill select incoming queries with QType=’ANY’ and send a response ‘REFUSED’. This rule istagged with ‘group’ = ‘traffic-filters’, which is also added to the ‘mydnsdist’ rulegroups list, as-sociating this rule to the DNSdist instances. More details on the specification of rules can befound in the reference guide.
Save the values.yaml file and upgrade the environment using the Helm Chart:

25

PowerDNS Cloud ControlOverview

The namespace
CC_NAMESPACE=my-namespace

Helm release name
HELM_RELEASE=ccdemo

helm upgrade $HELM_RELEASE ./powerdns --namespace $CC_NAMESPACE --values=./values.yaml

Using kubectl you should now be able to see the corresponding Kubernetes objects if youspecifically request them (since kubectl will not show any custom object types with ‘get all’):
Kubectl command to show all DNSDistRule objects in a namespace
kubectl get dnsdistrule --namespace=$CC_NAMESPACE

Kubectl output
NAME AGE
block-traffic-ruleset 6s

5.4.7 Using DNSdist rules to route traffic
In a previous step we added recursors & resolvers to the default pool, but it would make moresense to have them in separate pools so they can serve different purposes. Rules allow thisbehaviour to be configured, such as:
dnsdists:
mydnsdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

packetcache:
maxEntries: 200000

external:
serverGroups:
- group: myresolver

packetcache:
maxEntries: 200000

rulegroups:
- traffic-filters
- traffic-routers

recursors:
myrecursor:
replicas: 3

resolvers:
myresolver:
ips:
- 9.9.9.9
- 149.112.112.112

rulesets:
route-traffic-ruleset:
group: traffic-routers
type: DNSDistRule
priority: 200
rules: (continues on next page)

26

PowerDNS Cloud ControlOverview

(continued from previous page)
- name: External IPv6 resolution

combinator: AND
selectors:
- QType: AAAA

action:
Pool:
poolname: "external"

block-traffic-ruleset:
group: traffic-filters
type: DNSDistRule
priority: 100
rules:
- name: Block ANY
combinator: AND
selectors:
- QType: ANY

action:
RCode:

rcode: "REFUSED"
registrySecrets:
registry: registry.open-xchange.com
username: REGISTRY_USERNAME_HERE
password: REGISTRY_PASSWORD_HERE
email: admin@registry.open-xchange.com

ipFamily:
ipv4: true
ipv6: false
families:
- "IPv4"
- "IPv6"

In the above example we moved the ‘myresolver’ group to a new pool named ‘external’. Also, anew ruleset ‘route-traffic-ruleset’ was added which will match any queries with ‘QType’ = ‘AAAA’and assign the pool named ‘external’ to handle those queries.
Save the values.yaml file and upgrade the environment using the Helm Chart:
The namespace
CC_NAMESPACE=my-namespace

Helm release name
HELM_RELEASE=ccdemo

helm upgrade $HELM_RELEASE ./powerdns --namespace $CC_NAMESPACE --values=./values.yaml

Using kubectl you should now be able to see the new Kubernetes objects if you specificallyrequest them (since kubectl will not show any custom object types with ‘get all’):
Kubectl command to show all DNSDistRule objects in a namespace
kubectl get dnsdistrule --namespace=$CC_NAMESPACE

Kubectl output
NAME AGE
block-traffic-ruleset 33m
route-traffic-ruleset 2s

27

PowerDNS Cloud ControlOverview

5.4.8 Separating config into multiple files
As you start adding more instances & configuration options to the Helm Chart input file it be-comes harder to make sense of the config. A recommended approach to improving this is tomake use of Helm’s ability to add multiple values files to the arguments of the helm commandline. For example:
generic.yaml:
registrySecrets:
registry: registry.open-xchange.com
username: REGISTRY_USERNAME_HERE
password: REGISTRY_PASSWORD_HERE
email: admin@registry.open-xchange.com

ipFamily:
ipv4: true
ipv6: false
families:
- "IPv4"
- "IPv6"

rulesets.yaml:
rulesets:
block-traffic-ruleset:
group: traffic-filters
type: DNSDistRule
priority: 100
rules:
- name: Block ANY
combinator: AND
selectors:
- QType: ANY

action:
RCode:

rcode: "REFUSED"

instances.yaml:
dnsdists:
mydnsdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

packetcache:
maxEntries: 200000

rulegroups:
- traffic-filters

recursors:
myrecursor:
replicas: 3

You can then run helm as follows:

28

PowerDNS Cloud ControlOverview

The namespace
CC_NAMESPACE=my-namespace

Helm release name
HELM_RELEASE=ccdemo

helm upgrade $HELM_RELEASE ./powerdns --namespace $CC_NAMESPACE \
--values=./generic.yaml --values=./rulesets.yaml --values=./instances.yaml

5.4.9 Exposing dnsdist
We now have a set of dnsdist instances running, but to complete the setup we need to makesure we have a method to direct traffic to the dnsdist instances. You can find out the differentmethods to expose dnsdist instances by reading the chapter ‘Exposing dnsdist’ in the referenceguide.

5.4.10 Deploying ZoneControl
If you have one or more deployments of Auth running, you can deploy ZoneControl to managethe zones and records using a graphical user interface. This can be done by including an entryunder the ‘zonecontrols’ parent.
Since this will require a Postgres database, we either need to have an existing database avail-able for usage, or the extra Helm chart named powerdns-operators can be used to provision anOperator that creates Postgres databases for us. In the below example we will make use ofthe operator approach. To do so, we need to make sure the operator is installed, which can bedone as follows:
The release we're working with
CCTAG=2.6.3

The namespace
CCOPS_NAMESPACE=ccops

Helm release name
HELM_RELEASE=ccops

Ensure repo data is up-to-date
helm repo update

Pull the Helm Chart & unpack
helm pull cloudcontrol/powerdns-operators -d . --version=$CCTAG --untar

Deploy the operator
helm install $HELM_RELEASE ./powerdns-operators --namespace $CCOPS_NAMESPACE

As a result there should be a Postgres Operator running in the ‘ccops’ namespace. We can thendeploy ZoneControl:
generic.yaml:
registrySecrets:
registry: registry.open-xchange.com

(continues on next page)

29

PowerDNS Cloud ControlOverview

(continued from previous page)
username: REGISTRY_USERNAME_HERE
password: REGISTRY_PASSWORD_HERE
email: admin@registry.open-xchange.com

ipFamily:
ipv4: true
ipv6: false
families:
- "IPv4"
- "IPv6"

zonecontrols.yaml:
zonecontrols:
myzonecontrol:
replicas: 2
postgres:
operator: true

authEndpoints:
- name: auth1
url: https://auth1.example.com
key: "apiKeyForAuth1"

- name: auth2
url: https://auth1.example.com
key: "apiKeyForAuth2"

The above example assumes there are 2 deployments of Auth, named ‘auth1’ and ‘auth2’, withthe Auth API endpoints accessible via the corresponding url and key. For more configurationoptions you can refer to the reference guide.
You can deploy these as follows:
The namespace
ZC_NAMESPACE=zonecontrol

Helm release name
HELM_RELEASE=ccdemo

helm install $HELM_RELEASE ./powerdns --namespace $ZC_NAMESPACE \
--values=./generic.yaml --values=./zonecontrols.yaml

5.4.11 Deploying Cloud Control API
By default Cloud Control API is not enabled. To enable it, set the enabled flag under api to true.For example:
api:
enabled: true

When enabled, you will see the following deployed to your namespace:
• A deployment named cc-api: Set of Cloud Control API pods which run the actual API youcan interact with
• A statefulset named nats: Set of NATS pods to facilitate communication amongst API podsand towards the agents running in the PowerDNS product pods

30

PowerDNS Cloud ControlOverview

• A Secret named cc-api: Contains the access token and the full token. access will let youinteract with the read-only endpoints, while the full token will let you interact with all theendpoints.
Documentation for the API is dynamically generated based on your specific configuration. Tosee how to interact with the API, visit the base URL of the API (via Service or Ingress as per yourconfiguration) in a browser and you should be redirected towards the Swagger UI.
Current functionality supported by the Cloud Control API:

• Managed cache flushing for instances of deployed PowerDNS products
• Inspection of the state of your current Cloud Control deployment

Cache flushing is implemented in such a way that you can safely execute it on a live environ-ment. When executed, cache is first flushed sequentially (with a configurable delay in between)for Auth instances, then Recursor instances and finally dnsdist instances. You can either targetall instances of all products or select a set of instances and/or specific products.
Further configuration options for the Cloud Control API can be found in the reference guide.

31

PowerDNS Cloud ControlOverview

6 Advanced Examples
6.1 DNSdist: DoH
To deploy a set of DNSdist instances with DoH enabled, include a ‘doh’ configuration node inthe dnsdist instance. The example below shows a basic DoH-enabled deployment of a set ofDNSdist instances with Recursors:
dnsdists:
mydohdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

packetcache:
maxEntries: 200000

doh:
- name: mydoh

certificates:
- key: |-

-----BEGIN RSA PRIVATE KEY-----
<< CONTENTS OF PRIVATE KEY HERE>>
-----END RSA PRIVATE KEY-----

cert: |-
-----BEGIN CERTIFICATE-----
<< CONTENTS OF CERTIFICATE HERE>>
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
<< CONTENTS OF ANY INTERMEDIATE CERTIFICATE(S) HERE>>
-----END CERTIFICATE-----

recursors:
myrecursor:
replicas: 2

registrySecrets:
registry: registry.open-xchange.com
username: REGISTRY_USERNAME_HERE
password: REGISTRY_PASSWORD_HERE
email: admin@registry.open-xchange.com

ipFamily:
ipv4: true
ipv6: false
families:
- "IPv4"
- "IPv6"

Note: Make sure to replace the contents of the ‘key’ and ‘cert’ with the data of a valid pair.
32

PowerDNS Cloud ControlOverview

The above will result in a DNSdist deployment with the regular ‘dnsdist-mydohdist’ Service cre-ated, plus an additional Service named ‘dnsdist-mydohdist-doh-mydoh’. This additional Servicewill have (by default) an inbound listener for traffic over port ‘443’.
You can refer to the ‘Reference’ guide for all available options to configure DoH. Options avail-able include the configuration of STEK tickets (enabled & rotated by default) and loading certifi-cates from pre-existing TLS Secrets to leverage a certificate manager such as certmanager.

6.2 DNSdist: DoH3
To deploy a set of DNSdist instances with DoH3 enabled, include a ‘doh3’ configuration node inthe dnsdist instance. The example below shows a basic DoH3-enabled deployment of a set ofDNSdist instances with Recursors:
dnsdists:
mydoh3dist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

packetcache:
maxEntries: 200000

doh3:
- name: mydoh3

secrets:
- mydoh3-cert-secret

recursors:
myrecursor:
replicas: 2

registrySecrets:
registry: registry.open-xchange.com
username: REGISTRY_USERNAME_HERE
password: REGISTRY_PASSWORD_HERE
email: admin@registry.open-xchange.com

ipFamily:
ipv4: true
ipv6: false
families:
- "IPv4"
- "IPv6"

The above will result in a DNSdist deployment with the regular ‘dnsdist-mydoh3dist’ Servicecreated, plus an additional Service named ‘dnsdist-mydoh3dist-doh3-mydoh3’. This additionalService will have (by default) an inbound listener for traffic over port ‘443’ (UDP). Certificates willbe attempted to be loaded from the Secret named ‘mydoh3-cert-secret’.
You can refer to the ‘Reference’ guide for all available options to configure DoH3.

33

PowerDNS Cloud ControlOverview

6.3 DNSdist: DoQ
To deploy a set of DNSdist instances with DoQ enabled, include a ‘doq’ configuration node inthe dnsdist instance. The example below shows a basic DoQ-enabled deployment of a set ofDNSdist instances with Recursors:
dnsdists:
mydoqdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

packetcache:
maxEntries: 200000

doq:
- name: mydoq

secrets:
- mydoq-cert-secret

recursors:
myrecursor:
replicas: 2

registrySecrets:
registry: registry.open-xchange.com
username: REGISTRY_USERNAME_HERE
password: REGISTRY_PASSWORD_HERE
email: admin@registry.open-xchange.com

ipFamily:
ipv4: true
ipv6: false
families:
- "IPv4"
- "IPv6"

The above will result in a DNSdist deployment with the regular ‘dnsdist-mydoqdist’ Service cre-ated, plus an additional Service named ‘dnsdist-mydoqdist-doq-mydoq’. This additional Servicewill have (by default) an inbound listener for traffic over port ‘853’ (UDP). Certificates will beattempted to be loaded from the Secret named ‘mydoq-cert-secret’.
You can refer to the ‘Reference’ guide for all available options to configure DoQ.

6.4 DNSdist: DoT
To deploy a set of DNSdist instances with DoT enabled, include a ‘dot’ configuration node inthe dnsdist instance. The example below shows a basic DoT-enabled deployment of a set ofDNSdist instances with Recursors:
dnsdists:
mydotdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

(continues on next page)

34

PowerDNS Cloud ControlOverview

(continued from previous page)
packetcache:
maxEntries: 200000

dot:
- name: mydot

certificates:
- key: |-

-----BEGIN RSA PRIVATE KEY-----
<< CONTENTS OF PRIVATE KEY HERE>>
-----END RSA PRIVATE KEY-----

cert: |-
-----BEGIN CERTIFICATE-----
<< CONTENTS OF CERTIFICATE HERE>>
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
<< CONTENTS OF ANY INTERMEDIATE CERTIFICATE(S) HERE>>
-----END CERTIFICATE-----

recursors:
myrecursor:
replicas: 2

registrySecrets:
registry: registry.open-xchange.com
username: REGISTRY_USERNAME_HERE
password: REGISTRY_PASSWORD_HERE
email: admin@registry.open-xchange.com

ipFamily:
ipv4: true
ipv6: false
families:
- "IPv4"
- "IPv6"

Note: Make sure to replace the contents of the ‘key’ and ‘cert’ with the data of a valid pair.
The above will result in a DNSdist deployment with the regular ‘dnsdist-mydotdist’ Service cre-ated, plus an additional Service named ‘dnsdist-mydotdist-dot-mydot’. This additional Servicewill have (by default) an inbound listener for traffic over port ‘853’.
You can refer to the ‘Reference’ guide for all available options to configure DoT. Options avail-able include the configuration of STEK tickets (enabled & rotated by default) and loading certifi-cates from pre-existing TLS Secrets to leverage a certificate manager such as certmanager.

6.5 DNSdist: Co-hosted Recursor
To deploy a set of DNSdist instances with co-hosted Recursor instances, include a ‘recursor’configuration node in the dnsdist instance and specify the number of Recorsor instances. Theexample below shows an example of DNSdist instances with 2 co-hosted Recursors:
dnsdists:
mydnsdist:
replicas: 2
pools:
default:

packetcache:
maxEntries: 200000 (continues on next page)

35

PowerDNS Cloud ControlOverview

(continued from previous page)
recursor:
replicas: 2

registrySecrets:
registry: registry.open-xchange.com
username: REGISTRY_USERNAME_HERE
password: REGISTRY_PASSWORD_HERE
email: admin@registry.open-xchange.com

ipFamily:
ipv4: true
ipv6: false
families:
- "IPv4"
- "IPv6"

The above will result in a DNSdist deployment where each DNSdist Pod also contains 2 Recursorcontainers (+ a Recursor agent container to keep the Recursors synchronised)
Note: If you do not specify an amount of ‘replicas’ there will be no embedded recursor instancesdeployed.

6.6 DNSdist: Lua script
To deploy a set of DNSdist instances with custom Lua script included, include a luaScript config-uration node in the dnsdist instance. The example below shows a basic deployment of a set ofDNSdist instances with Recursors and a dynamic rule which will answer refused for 60 secondsif they are measured to be generating > 5 QPS on queries with type ANY :
dnsdists:
mydnsdist:
luaScript: |-
function maintenance()

addDynBlocks(exceedQTypeRate(DNSQType.ANY, 5, 10), "Exceeded ANY rate", 60)
end

setDynBlocksAction(DNSAction.Refused)
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

packetcache:
maxEntries: 200000

recursors:
myrecursor:
replicas: 2

For more information on the capabilities of Lua scripting you can refer to the product docu-mentation at: https://dnsdist.org/

36

https://dnsdist.org/

PowerDNS Cloud ControlOverview

6.6.1 Lua script from file
Helm also allows injecting the contents of a separate file into a configuration node in the helm
install & helm upgrade commands. This has several benefits, including not having to indent itinside your main YAML file.
For example, if you have a directory with these 2 files:
overrides.yaml:
dnsdists:
mydnsdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

packetcache:
maxEntries: 200000

recursors:
myrecursor:
replicas: 2

script.lua:
function maintenance()
addDynBlocks(exceedQTypeRate(DNSQType.ANY, 5, 10), "Exceeded ANY rate", 60)

end

setDynBlocksAction(DNSAction.Refused)

Then you could inject the Lua script as follows (dnsdists.mydnsdist.luaScript is the path to the
luaScript node for the dnsdist instance namedmydnsdist):
helm install myrelease ./powerdns --namespace mynamespace \

--values overrides.yaml --set-file dnsdists.mydnsdist.luaScript=script.lua

Note: This method assumes overrides.yaml and script.lua are in the same directory

6.7 Recursor: Lua script & config
To deploy a set of Recursor instances with custom Lua script and/or Lua config included, includea luaScript and/or luaConfig` configuration node in the Recursor instance. The example belowshows a basic deployment of a set of Recursors instances with both a Lua script and configincluded:
recursors:
myrecursor:
replicas: 2
luaScript: |-
function preresolve(dq)

if dq.qname:equal("somerecord.example.com") then
dq.rcode = 5
return true

(continues on next page)

37

PowerDNS Cloud ControlOverview

(continued from previous page)
end
return false

end
luaConfig: |-

addAllowedAdditionalQType(pdns.MX, {pdns.A, pdns.AAAA})

For more information on the capabilities of Lua scripting and Lua configuration you can referto the product documentation at: https://doc.powerdns.com/recursor/

6.7.1 Lua script and config from file
Helm also allows injecting the contents of a separate file into a configuration node in the helm
install & helm upgrade commands. This has several benefits, including not having to indent itinside your main YAML file.
For example, if you have a directory with these 3 files:
overrides.yaml:
recursors:
myrecursor:
replicas: 2

script.lua:
function preresolve(dq)
if dq.qname:equal("somerecord.example.com") then
dq.rcode = 5
return true

end
return false

end

lua.config:
addAllowedAdditionalQType(pdns.MX, {pdns.A, pdns.AAAA})

Then you could inject the Lua script as follows (recursors.myrecursor.luaScript is the path to the
luaScript node for the recursor instance namedmyrecursor):
helm install myrelease ./powerdns --namespace mynamespace \

--values overrides.yaml \
--set-file recursors.myrecursor.luaScript=script.lua \
--set-file recursors.myrecursor.luaConfig=lua.config \

Note: This method assumes overrides.yaml, script.lua and lua.config are in the same directory

38

https://doc.powerdns.com/recursor/

PowerDNS Cloud ControlOverview

6.8 Recursor: Forwarding zones
By default, a Recursor will attempt to resolve via public nameservers. If you have any zoneswhich you would like to be resolved by a specific set of nameservers and/or delegate to otherrecursive resolvers you can use the forward parameter.
A popular use case for forwarding is the following:

In this setup we tell Recursor to forward all traffic for zones matching ‘local.’ and ‘internal.’ toa set of Auth instances, while the rest of the traffic will be handled as per default resolution viapublic nameservers. To configure this scenario, you can use the following forwarding configu-ration:
recursors:
myrecursor:
replicas: 2
forward:
- zones:

- "local."
- "internal."

serverGroups:
- group: myauth

auths:
myauth:
replicas: 2
backends:
- type: ls
access_key: MY_ACCESS_KEY
secret_key: MY_SECRET_KEY

(continues on next page)

39

PowerDNS Cloud ControlOverview

(continued from previous page)
bucket: mybucket
endpoint: https://my.s3.endpoint

6.8.1 Automatically learning forward zones from Auth
If you have a set of Auth instances you would like to forward traffic to, you can also instructRecursor to learn the zones for which these Auth instances are authoritative. This can be donevia the learnFrom parameter. For example:
recursors:
myrecursor:
replicas: 2
forward:
- learnFrom: myauth

auths:
myauth:
replicas: 2
backends:
- type: ls
access_key: MY_ACCESS_KEY
secret_key: MY_SECRET_KEY
bucket: mybucket
endpoint: https://my.s3.endpoint

The above example will automatically forward all zones learned from the myauth instancestowards them.
Note: You can only reference the name of a set of Auth instances managed via CloudControl inthe learnFrom parameter, as this integration depends on the use of the Auth API.

6.8.2 Filtering learned zones from Auth
Besides forwarding all zones to an Auth, you can also filter them. A common use case for this isto have a predefined set of zones which you can use freely inside Auth to test, without exposingthem to the Recursor instances. This can be done via 2 parameters: exclude and include
An example using exclude:
recursors:
myrecursor:
replicas: 2
forward:
- learnFrom: myauth
exclude:
- ".test."
- "local.$"

The above example will learn all zones from Auth, and remove any zones which match:
• “.test.” any zone which contains “.test.” anywhere within the name
• “local.$” any zone which ends in “local.”

40

PowerDNS Cloud ControlOverview

And an example using include:
recursors:
myrecursor:
replicas: 2
forward:
- learnFrom: myauth
include:
- "internal.$"

The above example will learn all zones from Auth, but will only forward zones which match:
• “internal.$” any zone which ends in “internal.”

Also, you can use both exclude and include together:
recursors:
myrecursor:
replicas: 2
forward:
- learnFrom: myauth
include:
- "internal.$"

exclude:
- ".test."
- "local.$"

When both are used, all zones are learned, then reduced to the zones matching the includeparameter and finally any zones matching exclude are removed from the forwarding.
Notes:

• You can use $ at the end of your filter to signal this filter should only apply to zones endingwith this
• You can use ^ at the beginning of your filter to signal this filter should only apply to zonesstarting with this
• These filters match against the FQDN of a zone, hence you need to take into account thetrailing period in a zone, ie: “powerdns.com.”, not “powerdns.com”

6.8.3 Forwarding zones to another Recursor
If you have multiple sets of Recursor instances you can also forward from one set to another.For example:
recursors:
myrecursor:
replicas: 2
forward:
- zones:

- "internal."
serverGroups:
- group: internalrecursor

recurse: true
internalrecursor:
replicas: 2

41

PowerDNS Cloud ControlOverview

In the above example you can see we are telling the set of Recursors named myrecursor toforward internal. to the set of Recursors named internalrecursor. Since Recursor by defaultassumes we are forwarding to authoritative nameservers, we set recurse: true to ensure therequest for recursion is preserved.

6.8.4 Forwarding to external resolvers and/or authoritative nameservers
If you have resolvers and/or authoritative nameservers deployed in another location and wouldlike to forward traffic to them, you can use the resolvers type of instances. For example:
recursors:
myrecursor:
replicas: 2
forward:
- zones:

- "."
serverGroups:
- group: externalresolver

recurse: true

resolvers:
externalresolver:
ips:
- 1.2.3.4
- 5.6.7.8

In the above example all zonesmatching “.” (all of them!) will be forwarded to the IPs configuredin the resolver object named externalresolver with the request for recursion preserved.
Similarly, we can also forward to an external nameserver:
recursors:
myrecursor:
replicas: 2
forward:
- zones:

- "local."
serverGroups:
- group: externalnameserver

resolvers:
externalnameserver:
ips:
- 9.8.7.6
- 5.4.3.2

42

PowerDNS Cloud ControlOverview

6.8.5 Forwarding & DNSSEC
Forwarding to a set of Auth instances can run into problems when you are forwarding zoneswhich would otherwise be validated using DNSSEC. If this is the case, you can opt to havenegative trust anchors applied to all zones in a forward configuration, for example:
recursors:
myrecursor:
replicas: 2
forward:
- zones:

- "local"
- "internal"

serverGroups:
- group: myauth

nta: true

The nta: true in this example will enable the creation of negative trust anchors for each entry in
zones:

6.8.6 Priority
Forwarding to multiple sets of Auth instances and/or sets of Resolvers may lead to a scenariowhere you have multiple sets with a destination for the same zone. To manage the orderingof precedence in such a situation the priority field is available. The rules regarding the priorityfield:

• If multiple entries have a destination for the same zone, the entry with the lowest valuefor priority will be selected
• If multiple entries have the same priority and both have a destination for the same zone,the entry which is listed first in the forward: list will be selected
• By default each entry has priority = 100
• Priority must be a positive integer

For example:
recursors:
myrecursor:
replicas: 2
forward:
- zones:

- "my.zone.com"
serverGroups:
- group: resolver1

- zones:
- "my.zone.com"

serverGroups:
- group: resolver2

Both entries have no priority specified, so they both default to 100. Since they are equal andboth have a destination for my.zone.com, resolver1 will be selected due to its higher position inthe forward: list.
Example with priorities specified:

43

PowerDNS Cloud ControlOverview

recursors:
myrecursor:
replicas: 2
forward:
- zones:

- "my.zone.com"
priority: 900
serverGroups:
- group: resolver1

- zones:
- "my.zone.com"

priority: 50
serverGroups:
- group: resolver2

Now resolver2 will be selected, because it has a lower value for priority.

6.9 Multi-homed pods
Container network interface (CNI) plugins such as Multus CNI allow you to attach multiple net-work interfaces to pods (ie: multi-homed pods). Without multi-homed pods, you are limited tothe pod network (indicated by eth0 interfaces) as shown in the below diagram:

You can see this dnsdist + recursor example has the following traffic flows:
• dnsdist inbound from users: eth0
• dnsdist outbound to recursor: eth0
• recursor inbound from dnsdist: eth0
• recursor outbound to internet: eth0

Whether or not your Kubernetes cluster can accomodate for all the above traffic flows over thepod network depends on many factors and often the last flow (recursor outbound to internet)presents a problem. For this purpose using a multi-homed Recursor pod is a good alternative.An example of how this can be used:

44

PowerDNS Cloud ControlOverview

Now the example has the following traffic flows:
• dnsdist inbound from users: eth0
• dnsdist outbound to recursor: eth0
• recursor inbound from dnsdist: eth0
• recursor outbound to internet: net1 (the additional interface)

6.9.1 Configuring multi-homed Recursor pods
Making a Recursor pod multi-homed is a simple task, since this only involves adding an anno-tation to the pods. Your CNI plugin should take care of the rest.
For example using the Multus CNI plugin we can attach a Network named testnetv4 which isdefined in namespace kube-system:
dnsdists:
mydnsdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

recursors:
myrecursor:
podAnnotations:
k8s.v1.cni.cncf.io/networks: '[{

"name": "testnetv4",
"namespace": "kube-system"

}]'
replicas: 2

This results in the following setup (your additional nic might have a different name):

45

PowerDNS Cloud ControlOverview

By default, the Recursor will not make efficient use of the additional interface though, as Ku-bernetes default routing will prioritise the pod network’s eth0. To force the Recursor to use theadditional interface for outbound traffic you can configure the ‘outboundInterfaces’ parameter,for example:
dnsdists:
mydnsdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

recursors:
myrecursor:
podAnnotations:
k8s.v1.cni.cncf.io/networks: '[{

"name": "testnetv4",
"namespace": "kube-system"

}]'
replicas: 2
outboundInterfaces:
- net1

The Recursor will now be able to:
• Receive traffic from the pod network over eth0
• Receive traffic from the additional network over net1
• Send traffic to the additional network over net1

Note: The Recursor will no longer be able to send traffic to destinations on the pod networkwith this configuration. If you need to have the Recursor able to send traffic to destinationsboth internal and external to your Kubernetes cluster, the suggested approach is to solve thisvia routing modifications rather than having multiple interfaces.
If you are running a dualstack Kubernetes cluster and wish to assign an interface for bothan outbound IPv4 and IPv6 address, you can specify both of the additional interfaces in the‘outboundInterfaces’ list:
dnsdists:
mydnsdist:
replicas: 2
pools:
default:

serverGroups:

(continues on next page)

46

PowerDNS Cloud ControlOverview

(continued from previous page)
- group: myrecursor

recursors:
myrecursor:
podAnnotations:
k8s.v1.cni.cncf.io/networks: '[{

"name": "testnetv4",
"namespace": "kube-system"

},
{
"name": "testnetv6",
"namespace": "kube-system"

}]'
replicas: 2
outboundInterfaces:

- net1
- net2

Assuming the IPv4 NIC is assigned as ‘net1’ and the IPv6 NIC as ‘net2’, Recursor will now attemptto use both for outbound traffic based on the type of address it needs to communicate to (IPv4or IPv6).
In the above examples we configured Recursor’s outbound interface to our additional network,but it might not be desirable to allow inbound traffic from the internet to reach the Recursorpod. How to handle that situation is specific to the larger architecture/infrastructure in whichthe Kubernetes cluster resides, but if it is desirable then it is possible to stop Recursor fromlistening to the additional interface. An example which shows how to configure this (and more):
dnsdists:
mydnsdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

recursors:
myrecursor:
podAnnotations:
k8s.v1.cni.cncf.io/networks: '[{

"name": "testnetv4",
"namespace": "kube-system"

}]'
replicas: 2
inboundInterfaces:
- eth0

metricsInterfaces:
- eth0

outboundInterfaces:
- net1

readiness:
bindInterfaces:

- "eth0"

In the above deployment we ignore all the defaults and override each inbound & outboundtraffic flow to utilize a specific interface:
47

PowerDNS Cloud ControlOverview

• Inbound traffic to Recursor: eth0 (pod network)
• Inbound traffic to metrics aggregator: eth0 (pod network)
• Inbound traffic to readiness probe: eth0 (pod network)
• Outbound traffic from Recursor to nameservers: net1 (additional interface)

6.9.2 Configuring multi-homed DNSdist with co-hosted Recursor pods
Similar to above, making a dnsdist + co-hosted recursor pod requires the addition of an anno-tation:
dnsdists:
mydnsdist:
podAnnotations:
k8s.v1.cni.cncf.io/networks: '[{

"name": "testnetv4",
"namespace": "kube-system"

}]'
replicas: 2
recursor:
replicas: 2

This results in dnsdist pods as follows (your additional nic might have a different name):

The defaults for this scenario are slightly different, since Recursor is embedded within the Dns-dist pod. The enabled traffic flows are:
• Dnsdist: Receive traffic from the pod network over eth0
• Dnsdist: Send traffic via loopback to embedded Recursor containers
• Recursor: Receive traffic via loopback from Dnsdist
• Recursor: Send traffic to the additional network over net1

And the utility traffic flows:
• Inbound traffic to Dnsdist readiness: eth0 (pod network)
• Inbound traffic to Recursor readiness: eth0 (pod network) & net1 (additional interface)
• Inbound traffic to metrics aggregator: eth0 (pod network)

Suppose we want to implement a common scenario, where all inbound traffic is limited the thepod network, while recursor’s outbound traffic uses the additional interface. Then we wouldwant the following traffic flows:
48

PowerDNS Cloud ControlOverview

• Dnsdist: Receive traffic over pod network: eth0
• Recursor: Send traffic to nameservers over additional network: net1
• Utilities: Receive traffic over pod network: eth0

The above deployment can be finetuned as follows to accomodate this scenario:
dnsdists:
mydnsdist:
podAnnotations:
k8s.v1.cni.cncf.io/networks: '[{

"name": "testnetv4",
"namespace": "kube-system"

}]'
replicas: 2
recursor:
replicas: 2
outboundInterfaces:

- net1
readiness:

bindInterfaces:
- "eth0"

6.10 Auth: Backends
Within Cloud Control deployments, Auth supports 4 backends:

• Postgres
• MySQL
• GeoIP
• LMDB with LightningStream

6.10.1 Postgres
If you have a Postgres (or compatible) cluster available, you can configure Auth to store its datain a Postgres database. A simple example using the postgres backend:
auths:
myauth:
replicas: 2
backends:
- type: postgres
host: pg.host.local
dbname: mydb
user: some_user
password: some_password

When deployed, you will have an environment as follows:

49

PowerDNS Cloud ControlOverview

If you have a Postgres cluster available with replication features, you can utilise this to deployCloud Control in multiple datacenters with shared data:

For further configuration options regarding the Postgres backend you can read the correspond-ing chapter in the reference guide.

6.10.2 MySQL
If you have a MySQL (or compatible) cluster available, you can configure Auth to store its datain a MySQL database. A simple example using the mysql backend:
auths:
myauth:
replicas: 2
backends:
- type: mysql
host: mysq.host.local
dbname: mydb

(continues on next page)

50

PowerDNS Cloud ControlOverview

(continued from previous page)
user: some_user
password: some_password

When deployed, you will have an environment as follows:

If you have a MySQL cluster available with replication features, you can utilise this to deployCloud Control in multiple datacenters with shared data:

For further configuration options regarding the MySQL backend you can read the correspond-ing chapter in the reference guide.

51

PowerDNS Cloud ControlOverview

6.10.3 GeoIP
This backend allows zones to be managed via a YAML format included in the backend configu-ration and the inclusion of a GeoIP database. The records managed via this backend can makeuse of the GeoIP database to respond to DNS queries with an answer based on the request’sorigin. High-level configuration looks as follows:
auths:
myauth:
replicas: 2
backends:
- type: geoip
databases: <Configuration of one or more GeoIP databases>
domains: <Configuration of domains>

Note: Configuration of this backend is quite complex, for more detailed examples please referto the reference guide.
When deployed, you will have an environment as follows:

Since the Auth instances have a copy of the zonefile(s) and GeoIP databases locally, you canreplicate this deployment across multiple datacenters simply by deploying the same configura-tion to each datacenter.

6.10.4 LMDB with LightningStream
This backend allows you to utilise an S3 bucket to store & replicate data between Auth instanceswithin a datacenter and across multiple datacenters. Locally each Auth instance writes to anLMDB database, which the LightningStream component then synchronises bi-directionally withthe snapshots stored in the S3 bucket. Configuration looks as follows:
auths:
myauth:
replicas: 2
backends:
- type: ls
access_key: MY_ACCESS_KEY
secret_key: MY_SECRET_KEY
bucket: mybucket
endpoint: https://my.s3.endpoint

52

PowerDNS Cloud ControlOverview

When deployed, you will have an environment as follows:

The additional Migrator pod will be deployed to monitor the different schema versions (basedon Auth version) for which snapshots are available in the S3 bucket. When you initially deployan environment with this backend the migrator will not have anything to do. However, onceyou upgrade to a newer version of Cloud Control, there might be changes to the schema usedby Auth. The Migrator will ensure a seamless transition to the new schema without having tobring the environment offline for schema upgrading and/or manual maintenance.
If you have a distributed S3 bucket available (or multiple buckets with replication) you can keepmultiple deployments across datacenters in sync.
Example diagram of such a setup with replicated S3 buckets:

Because of the Migrator pod, you can safely upgrade Cloud Control in each datacenter sequen-tially. When you upgrade datacenter #1, all known data will be migrated to a new schemaversion (if required) and any writes handled by the deployment in datacenter #2 (old schemaversion) will be migrated, albeit with a minor delay of 10-15 seconds. Once all deployments areupgraded to the same version, the Migrator will no longer have anyhing to do and will idle untila new upgrade is detected.
Once the migrator has detected that the previous schema version has not been updated for acertain period (Default: 28 days) since it was last migrated successfully, the old schema will beremoved. This behaviour can be modified via the following parameters on the backend:

53

PowerDNS Cloud ControlOverview

auths:
myauth:
replicas: 2
backends:
- type: ls
access_key: MY_ACCESS_KEY
secret_key: MY_SECRET_KEY
bucket: mybucket
endpoint: https://my.s3.endpoint
removeOldSchemaAge: 336h

The use of removeOldSchemaAge will instruct the migrator to cleanup an old schema once it hasbeen migrated successfully and since then has had no changes observed for 336 hours.
To disable the cleanup mechanism and keep the old schemas indefinitely, you can disable italtogether by setting removeOldSchemaEnabled to false:
auths:
myauth:
replicas: 2
backends:
- type: ls
access_key: MY_ACCESS_KEY
secret_key: MY_SECRET_KEY
bucket: mybucket
endpoint: https://my.s3.endpoint
removeOldSchemaEnabled: false

Synchronization modes
In addition to the default sync mode described above, you can also deploy LightningStream in
receivemode. In this configuration, the following changes are active:

• LightningStream only pulls changes from the s3 bucket, it no longer writes to the bucket
• Migrator Pod is not deployed, since this deployment will not be writing changes
• Less privileges are required, since LightningStream will only need to fetch the contents ofthe s3 bucket

When you have a deployment with the default syncmode (left in diagram) and another with the
receive mode (right in diagram), both using the same s3 bucket, you will have a deployment asfollows:

54

PowerDNS Cloud ControlOverview

Cleanup
LightningStream includes a cleanup component, which will periodically check the S3 bucket tolocate old snapshots which are no longer required. If it locates snapshots which are no longerneeded, they will be removed from the S3 bucket. By default this cleanup mechnism is enabledand it is highly advisable to keep it this way to prevent the bucket from occupying more storagethan necessary. Having the cleanup enabled also allows LightningStream to sync faster, as ithas fewer snapshots to consider. Intervals and restrictions used by the cleanup component areincluded in the reference guide chapter for configuring LightningStream.

Handling S3 bucket outages/errors
If for any reason the S3 bucket becomes unavailable or unreachable by LightningStream, thecorresponding Auth instance will no longer be able to keep in sync with the other instances.Modifications made to the data by this particular Auth instance will not be lost though, as soonas the S3 bucket is available again this data will be synced.
While the S3 bucket is not available/reachable, there are several options that control how CloudControl will deal with this situation:

• unreadyIfError: If LightningStream has detected problems with the S3 bucket for a periodexceeding the error threshold, the LightningStream container (and hence the Auth pod)will be marked as NotReady. Consequence is that this Auth Pod will be removed from theService and stop receiving traffic.
• unreadyIfWarning: If LightningStream has detected problems with the S3 bucket for aperiod exceeding the warning threshold, the LightningStream container (and hence theAuth pod) will be marked as NotReady. Consequence is that this Auth Pod will be removedfrom the Service and stop receiving traffic.
• waitForInitialSync: When an Auth Pod is spawned, mark the Pod as NotReady until Light-ningStream has successfully completed its initial sync with the S3 bucket.

The defaults for LightningStream are as follows:
• unreadyIfError: true
• unreadyIfWarning: false
• waitForInitialSync: true

This is typically a good configuration for an Auth deployment which should not be allowed tobe available if data consistency across all instances is preferred over availability of all Authinstances.
Another potential combination could be as follows:

• unreadyIfError: false
• unreadyIfWarning: false
• waitForInitialSync: true

This could be used when an Auth instance primarily relies upon another backend and has LMDBwith LightningStream as a secondary backend defined. Also, if you prefer availability of the AuthPods over data consistency you could use this configuration.

55

PowerDNS Cloud ControlOverview

If you also want the Auth Pod to register to the Service before LightningStream has completedits initial sync, you can set waitForInitialSync to false.
Note: Configuring the error and warning thresholds is possible via the health setting on thebackend. This is documented in more detail in the reference guide in chapter ‘LightningStream- Health Configuration’
S3 buckets with versioning
LightningStream does not require any versioning to be enabled on S3 buckets to function, butit might be enabled if your S3 provider needs this to support your desired replication topology.
If versioning is applied to your bucket, it is advisable to also enable lifecycle management tomake sure a limited amount of versions are kept. In addition, lifecycle management on yourversioned S3 buckets can ensure objects are actually deleted (instead of marked for deletion)after LightningStream issues a delete operation for them.

6.11 Auth: ixfrdist
To deploy a set of Auth instances with ixfrdist enabled, include a ‘ixfrdist’ configuration nodein the Auth instance with ‘enabled’ set to ‘true’. There are currently three different ways toconfigure the domains eligible for distribution (mutually exclusive - only one can be used):

• inline inside the ‘domains’ dictionary in the helm values
• from a pre-existing ConfigMap referenced by the ‘domainsConfigMap’ parameter
• automatically learned from the Auth instance in the Pod where ixfrdist resides

The example below shows a basic Auth deployment with ixfrdist enabled, domains configured‘inline’ and a DNSdist deployment to expose ixfrdist:
auths:
myixfrauth:
replicas: 2
backends:
- type: ls
access_key: MY_ACCESS_KEY
secret_key: MY_SECRET_KEY
bucket: mybucket
endpoint: https://my.s3.endpoint

ixfrdist:
enabled: true
domains:

- domain: "zone1.ixfrdist.local"
- domain: "zone3.ixfrdist.local"

dnsdists:
myixfrdnsdist:
replicas: 2
readiness:
healthCheck: false

pools:
default:

serverGroups: (continues on next page)

56

PowerDNS Cloud ControlOverview

(continued from previous page)
- group: myixfrauth
component: ixfrdist

The above will result in an Auth deployment with a Lightning Stream backend. Inside each AuthPod, there will be an ‘ixfrdist’ container which will attempt to transfer and re-serve the definedzones (‘zone1.ixfrdist.local’ and ‘zone3.ixfrdist.local’ over AXFR and IXFR).
To expose ixfrdist, a DNSdist deployment is included with some configuration specific to ixfrdist:

• ‘healthCheck: false’ under readiness will ensure that DNSdist does not try to perform thedefault readiness probes for ‘a.root-servers.net’ to determine if the DNSdist instance isready for traffic (as ixfrdist will not be able to answer these queries succesfully)
• ‘component: ixfrdist’ under serverGroups will instruct DNSdist to send this traffic to theixfrdist container instead of the Auth container

You can refer to the ‘Reference’ guide for all available options to configure ixfrdist.

6.11.1 ixfrdist with domains from a ConfigMap
The example below shows a basic Auth deployment with ixfrdist enabled and domains config-ured to be taken from a pre-existing ConfigMap named ‘my-ixfrdist-domains’:
auths:
myixfrauth:
replicas: 2
backends:
- type: ls
access_key: MY_ACCESS_KEY
secret_key: MY_SECRET_KEY
bucket: mybucket
endpoint: https://my.s3.endpoint

ixfrdist:
enabled: true
domainsConfigMap: my-ixfrdist-domains

The contents of this ConfigMap has to be in the correct format, as shown below:
apiVersion: v1
kind: ConfigMap
metadata:
name: my-ixfrdist-domains
namespace: userplane-namespace

data:
domains.yaml: |
domains:
- domain: zone1.ixfrdist.local
- domain: zone2.ixfrdist.local
- domain: zone3.ixfrdist.local

For each domain in the ‘domains’ dictionary you can also configure ‘master’ and ‘max-soa-refresh’. The purpose of these in further detailed in the ixfrdist chapter in the reference guide.

57

PowerDNS Cloud ControlOverview

6.11.2 ixfrdist with domains learned from Auth
The example below shows a basic Auth deployment with ixfrdist enabled and domains config-ured to be learned from the Auth instance in the Pod where ixfrdist resides:
auths:
myixfrauth:
replicas: 2
backends:
- type: ls
access_key: MY_ACCESS_KEY
secret_key: MY_SECRET_KEY
bucket: mybucket
endpoint: https://my.s3.endpoint

ixfrdist:
enabled: true

learn:
enabled: true

In this example, all domains known by Auth will be learned. To include and/or exclude domainsyou can use the ‘include’ and ‘exclude’ parameters (see ixfrdist chapter in reference guide formore details).

6.12 Dstore-dist: Recursor
To deploy a set of Recursor instances with dstore-dist enabled, include a ‘dstoredist’ config-uration node in the Recursor instance with a set of destinations and routes configured. Theexample below shows a basic Recursor deployment with dstore-dist enabled to distribute pro-tobuf messages to a Kafka endpoint:
recursors:
myrecursor:
replicas: 2
dstoredist:
destinations:
mydestination:
type: kafka
kafka:

addresses:
- my.kafka.local:9092

topic: my_topic
routes:
myroute:
destinations:
- mydestination

The above will result in a Recursor deployment with a dstore-dist sidecar. By default, whendstore-dist is enabled in a Recursor pod all inbound queries and corresponding answers willbe sent to dstore-dist and then distributed according to the configured routes and destina-tions. In this example, for all inbound queries and corresponding answers a protobuf messagewill be generated and distributed to a kafka topic named ‘my_topic’ via a Kafka endpoint at‘my.kafka.local:9092’.
You can refer to the ‘Reference’ guide for all available options to configure dstore-dist within a

58

PowerDNS Cloud ControlOverview

Recursor pod.

6.13 Dstore-dist: DNSdist
To deploy a set of DNSdist instances with dstore-dist enabled, include a ‘dstoredist’ configura-tion node in the DNSdist instance with a set of destinations and routes configured. The exam-ple below shows a basic DNSdist deployment with dstore-dist enabled to distribute protobufmessages to a Kafka endpoint:
dnsdists:
mydnsdist:
replicas: 2
dstoredist:
destinations:
mydestination:
type: kafka
kafka:

addresses:
- my.kafka.local:9092

topic: my_topic
routes:
myroute:
destinations:
- mydestination

luaScript: |-
addResponseAction(QNameRule("example.test.local"),␣

→˓RemoteLogResponseAction(ccdstoredist))

The above will result in a DNSdist deployment with a dstore-dist sidecar. In addition, a ‘Re-moteLogger’ object named ‘ccdstoredist’ becomes available for use in DNSdist Lua script andvia the DNSDistRule objects.
In the example, the ‘ccdstoredist’ RemoteLogger is configured to send protobuf messages tothe dstore-dist sidecar, which will then distribute them to a kafka topic named ‘my_topic’ via aKafka endpoint at ‘my.kafka.local:9092’.
The ‘luaScript’ will ensure a protobuf message is generated by calling the action ‘RemoteLo-gResponseAction(ccdstoredist)’ when the response is generated (the ‘addResponseAction’) fora query matching the ‘QNameRule’ of ‘example.test.local’.
The same example using DNSDistRule instead of luaScript:
dnsdists:
mydnsdist:
replicas: 2
dstoredist:
destinations:
mydestination:
type: kafka
kafka:

addresses:
- my.kafka.local:9092

topic: my_topic
routes:
myroute:

(continues on next page)

59

PowerDNS Cloud ControlOverview

(continued from previous page)
destinations:
- mydestination

rulegroups:
- dstore-dist-rules

rulesets:
dstoredist-action-ruleset:
group: dstore-dist-rules
type: DNSDistRule
priority: 100
rules:
- name: Example logger
combinator: AND
selectors:
- QName: "example.test.local"

action:
RemoteLog:
remoteLogger: ccdstoredist

Lastly, you can also enable dstore-dist in a DNSdist Pod with embedded Recursor instancesto capture traffic from both DNSdist and recursor. To do this, configure DNSdist as usual toenable dstore-dist, then add a ‘dstoredist’ configuration to the nested recursor configuration.For example:
dnsdists:
mydnsdist:
replicas: 2
dstoredist:
destinations:
mydestination:
type: kafka
kafka:

addresses:
- my.kafka.local:9092

topic: my_topic
routes:
myroute:
destinations:
- mydestination

luaScript: |-
addResponseAction(AllRule(), RemoteLogResponseAction(ccdstoredist))

recursor:
replicas: 2
dstoredist:

inbound:
enabled: true

outbound:
enabled: true

Note: The destinations and routes do not need to be configured on the nested recrusor, as thisis derived from the main DNSdist dstoredist configuration.
In the above example, DNSdist will send protobuf messages for responses to all queries (the‘AllRule()’ rule) and Recursor will send protobuf messages for all queries and corresponding an-swers for inbound traffic (received queries) and outbound traffic (queries sent during resolutionand/or forwarding).

60

PowerDNS Cloud ControlOverview

You can refer to the ‘Reference’ guide for all available options to configure dstore-dist within aDNSdist pod.

6.14 Dstore-dist: Standalone
To deploy a set of dstore-dist instances in dedicated pods, configure the instances under thetop-level ‘dstoredists’ node. The example below shows a standalone dstore-dist deploymentenabled to distribute protobuf messages to a Kafka endpoint:
dstoredists:
mydstoredist:
replicas: 2
destinations:
mydestination:

type: kafka
kafka:
addresses:
- my.kafka.local:9092

topic: my_topic
routes:
myroute:

destinations:
- mydestination

The above will result in a dstore-dist deployment configured to distribute all received protobufmessages to a kafka topic named ‘my_topic’ via a Kafka endpoint at ‘my.kafka.local:9092’.
To configure Recursor and DNSdist deployments to use this standalone dstore-dist for aggre-gation, filtering and/or distribution, you can reference it by name:
dstoredists:
mydstoredist:
replicas: 2
destinations:
mydestination:

type: kafka
kafka:
addresses:
- my.kafka.local:9092

topic: my_topic
routes:
myroute:

destinations:
- mydestination

recursors:
myrecursor:
replicas: 2
dstoredist:
inbound:

enabled: true
outbound:
enabled: true

dstoredists:
- group: mydstoredist

(continues on next page)

61

PowerDNS Cloud ControlOverview

(continued from previous page)
dnsdists:
mydnsdist:
replicas: 2
dstoredist:
dstoredists:
- group: mydstoredist

luaScript: |-
addResponseAction(AllRule(), RemoteLogResponseAction(ccdstoredist))

In the above example the DNSdist and Recursor instances will have a dstore-dist sidecar whichwill distribute all generated protobuf messages to the dstoredists instance set named ‘myd-storedist’

62

PowerDNS Cloud ControlOverview

7 Security
7.1 Verification of OCI artifacts
CloudControl Helm Charts and container images are made available as OCI artifacts. To allowverification of authenticity of these artifacts, each of them is signed using cosign (https://
docs.sigstore.dev/signing/quickstart/).
The following public key can be used to verify the CloudControl OCI artifacts:
-----BEGIN PUBLIC KEY-----
MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE8V1VF5mq63jGEe8vfUg87pQKQ/qN
201vIRUbfaJrbYgToDfCIg+q90FKSLvxssho8AyWgvGoEf1UQycf/QbyJA==
-----END PUBLIC KEY-----

This verification can be performed via several methods, below we will show how to do thismanually using the cosign CLI. Prerequisite to be able to do this manually is to download andinstall cosign, which can be done via the above link.
First, make sure to save the above public key to a local file, we will use /tmp/cc.pub in the belowexamples.
Then, make sure you have a login configuration locally for the OX registry, this can be doneeither via Docker (if installed) or cosign using the login command. Example using cosign:
cosign login registry.open-xchange.com --username=REGISTRY_USER --password=REGISTRY_PASS

Note: You can also feed the password in via stdin
See `cosign login --help` for more options.

Now you can use cosign to verify the signatures of the CloudControl OCI artifacts. To do this,you can use the following command:
cosign verify --key=/tmp/cc.pub registry.open-xchange.com/<repository>/<name>:<tag>

Expected output upon successful verification should include:
The following checks were performed on each of these signatures:
- The cosign claims were validated
- Existence of the claims in the transparency log was verified offline
- The signatures were verified against the specified public key

<JSON encoded details of the verification>

63

https://docs.sigstore.dev/signing/quickstart/
https://docs.sigstore.dev/signing/quickstart/

PowerDNS Cloud ControlOverview

8 Troubleshooting
8.1 Accessing DNSdist console
DNSdist offers a commandline console which allows for debugging of issues and retrievingstatistics. In Cloud Control deployments this is enabled by default and can be accessed viakubectl’s exec command. This chapter will show how to gain access to the console and a fewsample commands. For full documentation on the DNSdist console you can refer to: DNSdistreference guide
Note: While DNSdist’s console exposes methods to modify a running instance we highly en-courage users NOT to do this. Any change made to a running instance using the console willnot persist and will not be synchronized to other DNSdist instances.
The following command can be used to gain access to the console:
Pod name (make sure to replace with an existing DNSdist pod's name)
POD=mydnsdist-775cbf55d9-qjtks

The namespace
CC_NAMESPACE=my-namespace

Kubectl command to access the DNSdist console
kubectl exec -it $POD --namespace=$CC_NAMESPACE -c dnsdist -- dnsdist -c \
--config=/config/dnsdist.conf

You should then be presented with a console session as follows:
* dnsdist-state loaded
* Control socket set to 127.0.0.1:5199 with provided key
>

To see the status of the recursor and/or resolver instances that DNSdist will send queries touse showServers():
> showServers()
Name Address State Qps Ord Wt Queries Pools
0 Endpoints/my-namespa 10.244.1.7:5353 up 0.0 1 1 546
1 Endpoints/my-namespa 10.244.1.8:5353 up 0.0 1 1 0
2 Endpoints/my-namespa 10.244.1.9:5353 up 0.0 1 1 0
3 Endpoints/my-namespa 149.112.112.112:53 up 0.0 1 1 0 external
4 Endpoints/my-namespa 9.9.9.9:53 up 0.0 1 1 0 external
All 0.0 546

64

https://dnsdist.org/guides/console.html
https://dnsdist.org/guides/console.html

PowerDNS Cloud ControlOverview

Show the pools using showPools():
> showPools()
Name Cache ServerPolicy Servers

leastOutstanding 10.244.1.7:5353, 10.244.1.8:5353, 10.244.1.9:5353
external leastOutstanding 149.112.112.112:53, 9.9.9.9:53

List all rules with showRules():
> showRules()
Name Matches Rule Action
0 0 qtype==ANY set rcode 5
1 0 qtype==AAAA to pool external

8.2 Pod Events
Cloud Control pods, primarily DNSdist, emit events to indicate potential problematic behaviourand provide tracability into the synchronisation processes.
There are many ways to list events in a namespace, for a pod, etc.. In the below example we’lluse kubectl’s get event to show the events for a specific pod, but in a production setting werecommend capturing these in your logging/monitoring infrastructure.
Pod name (make sure to replace with an existing DNSdist pod's name)
POD=mydnsdist-775cbf55d9-qjtks

The namespace
CC_NAMESPACE=my-namespace

Kubectl command to list recent events emitted by a pod in a given namespace
kubectl get event --namespace=$CC_NAMESPACE --field-selector involvedObject.name=$POD

Examples of events generated by DNSdist pods (reformatted to fit):
Event emitted by agent when a rule is updated
Type: Normal
Reason: DNSDistRuleUpdated
Object: pod/mydnsdist-775cbf55d9-gvjwk
Message: DNSDistRule 'my-namespace/block-traffic-ruleset' has been synchronised

Event emitted by agent when a recursor/resolver endpoint changes
Type: Normal
Reason: EndpointsUpdated
Object: pod/mydnsdist-775cbf55d9-gvjwk
Message: Endpoints 'my-namespace/recursor-myrecursor' has been synchronised

Event emitted by Kubernetes when a readiness probe fails
Type: Warning
Reason: Unhealthy
Object: pod/mydnsdist-775cbf55d9-gvjwk
Message: Readiness probe failed: HTTP probe failed with statuscode: 500

65

PowerDNS Cloud ControlOverview

9 Compatibility
9.1 Kubernetes
All Cloud Control releases are tested against the Kubernetes versions which are actively sup-ported by the Kubernetes project when the Cloud Control release is made available. As CloudControl development does not follow the same cadence as Kubernetes, some Cloud Control re-leases may have been validated against Kubernetes releases that are subsequently no longerin active support by the Kubernetes project.
The releases supported by the Kubernetes project can be found at the following location:
https://kubernetes.io/releases/

9.1.1 Validated releases
This version of Cloud Control has been validated against the following Kubernetes releases:

• 1.29
• 1.28
• 1.27
• 1.26

9.2 OpenShift
As of release 2.5.0, Cloud Control releases are tested against the OpenShift versions which areactively supported by Red Hat and available for deployment via ‘Red Hat OpenShift Service onAWS’ (ROSA) at the time of each specific Cloud Control release.

9.2.1 Validated releases
This version of Cloud Control has been validated against the following OpenShift releases:

• 4.15
• 4.14
• 4.13
• 4.12

66

https://kubernetes.io/releases/

	Cloud Control
	Simple deployment - Recursor
	Simple deployment - Auth
	Complex deployment
	Rules & Actions
	DNSdist with co-hosted Recursors
	DNSdist with DoH, DoH3, DoQ and/or DoT listeners
	ZoneControl deployment
	Dstore-dist
	Ixfrdist

	Cloud Control on Kubernetes
	Auth
	Auth agent

	DNSdist
	DNSdist agent

	Recursor
	Recursor agent

	Resolver
	Ruleset
	ZoneControl
	ZoneControl Syncer

	Cloud Control on OpenShift
	podSecurityContext

	Helm Charts
	Helm Chart: powerdns-crds
	Helm Chart: powerdns
	Helm Chart: powerdns-operators

	Getting Started
	Install Tools
	Download Helm Charts
	Install/Upgrade CloudControl CRDs
	Install/Upgrade CloudControl
	Registry Credentials
	Cluster Networking
	Deploying Recursor
	Adding DNSdist
	Adding an external Resolver
	Adding a DNSdist rule
	Using DNSdist rules to route traffic
	Separating config into multiple files
	Exposing dnsdist
	Deploying ZoneControl
	Deploying Cloud Control API

	Advanced Examples
	DNSdist: DoH
	DNSdist: DoH3
	DNSdist: DoQ
	DNSdist: DoT
	DNSdist: Co-hosted Recursor
	DNSdist: Lua script
	Lua script from file

	Recursor: Lua script & config
	Lua script and config from file

	Recursor: Forwarding zones
	Automatically learning forward zones from Auth
	Filtering learned zones from Auth
	Forwarding zones to another Recursor
	Forwarding to external resolvers and/or authoritative nameservers
	Forwarding & DNSSEC
	Priority

	Multi-homed pods
	Configuring multi-homed Recursor pods
	Configuring multi-homed DNSdist with co-hosted Recursor pods

	Auth: Backends
	Postgres
	MySQL
	GeoIP
	LMDB with LightningStream

	Auth: ixfrdist
	ixfrdist with domains from a ConfigMap
	ixfrdist with domains learned from Auth

	Dstore-dist: Recursor
	Dstore-dist: DNSdist
	Dstore-dist: Standalone

	Security
	Verification of OCI artifacts

	Troubleshooting
	Accessing DNSdist console
	Pod Events

	Compatibility
	Kubernetes
	Validated releases

	OpenShift
	Validated releases

